Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có:
Hàm số (C) có ba điểm cực trị ⇔ m ≠ 0 (*) .
Với điều kiện (*) gọi ba điểm cực trị là:
.
Do đó nếu ba điểm cực trị tạo thành một tam giác vuông cân, thì sẽ vuông cân tại đỉnh A.
Do tính chất của hàm số trùng phương, tam giác ABC đã là tam giác cân rồi, cho nên để thỏa mãn điều kiện tam giác là vuông, thì AB vuông góc với AC
Tam giác ABC vuông khi:
Vậy với m = ± 1 thì thỏa mãn yêu cầu bài toán.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
⇔ b 3 8 a + 1 = 0 ⇔ - m 6 + 1 = 0
⇔ m = ± 1
Chọn C.
Cách 1: TXĐ: D = ℝ
Hàm số đã cho có ba điểm cực trị khi và chỉ khi m > 0 (*)
Với điều kiện (*) đồ thị hàm số có ba điểm cực trị là:
Ta có:
Suy ra tam giác ABC cân tại A. Do đó tam giác ABC vuông cân tại A
Kết hợp (*) suy ra m = 1.
Cách 2: Áp dụng công thức tính nhanh: Đồ thị hàm số có ba điểm cực trị là ba đỉnh của một tam giác vuông cân khi và chỉ khi
Ta có: ycbt ⇔ ( - 2 m ) 3 + 8 = 0
Chọn B
Ta có :
Hàm số đã cho có ba điểm cực trị khi m > 0(*)
Khi đó ba điểm cực trị của đồ thị hàm số là
A ( 0 ; m - 1 ) , B ( - m ; - m 2 + m - 1 )
S ∆ A B C = 1 2 y B - y A x c - x B
Kết hợp điều kiện (*) ta có
[Phương pháp trắc nghiệm]
Áp dụng công thức
Kết hợp điều kiện (*) ta có
Chọn B
Ta có :
Hàm số đã cho có ba điểm cực trị khi m > 0(*)
Khi đó ba điểm cực trị của đồ thị hàm số là
A ( 0 ; m - 1 ) , B ( - m ; - m 2 + m - 1 )
S ∆ A B C = 1 2 y B - y A x c - x B
Kết hợp điều kiện (*) ta có
[Phương pháp trắc nghiệm]
Áp dụng công thức
Kết hợp điều kiện (*) ta có
Chọn B
[Phương pháp tự luận]
Hàm số có 3 điểm cực trị khi m > 0
Ba điểm cực trị là
Gọi I là trung điểm của B C ⇒ I ( 0 ; m - m 2 )
S ∆ A B C = 1 2 A I . B C = m m 2
Chu vi của ∆ A B C là:
Bán kính đường tròn nội tiếp ∆ A B C là:
r = S ∆ A B C p = m m 2 m + m 4 + m
Theo bài ra: r > 1 ⇔ m m 2 m + m 4 + m > 1
⇔ m m 2 ( m + m 4 - m ) m 4 > 1 (vì m > 0 )
So sánh điều kiện suy ra m > 2 thỏa mãn.
[Phương pháp trắc nghiệm]
Sử dụng công thức
Theo bài ra:
So sánh điều kiện suy ra m > 2 thỏa mãn.
Chọn D
[Phương pháp trắc nghiệm]
Hàm số có 3 điểm cực trị khi m ≠ 0
Áp dụng công thức
ta có: S ∆ A B C = b 2 4 a - b 2 a
⇔ m = ± 2 5 ( thỏa mãn).
Chọn D.
TXĐ: D = R.
Đồ thị hàm số có 3 điểm cực trị ⇔ y' = 0 có ba nghiệm phân biệt ⇔ m -1 > 0 ⇔ m > 1(*)
3 điểm cực trị của đồ thị hàm số là: A(0;1),
Hàm số đã cho là hàm số chẵn nên đồ thị hàm số nhận Oy làm trục đối xứng
Ta có
Kết hợp với điều kiện (*) => m = 2
Làm theo bào toán trắc nghiệm như sau:
Hàm số đã cho có 3 điểm cực trị khi ab < 0
Chỉ có đáp án D thỏa mãn.
Chọn D
Hàm số có 3 điểm cực trị ⇔ m ≠ 0
Khi đó 3 điểm cực trị của đồ thị hàm số là
Do tính chất đối xứng, ta có ∆ A B C cân tại đỉnh A
Vậy ∆ A B C chỉ có thể vuông cân tại đỉnh A
Kết hợp điều kiện ta có: m = ± 1 ( thỏa mãn).
Lưu ý: có thể sử dụng công thức b 3 8 a + 1 = 0 .