K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

Câu b là

x2-x+1/4

26 tháng 8 2021

Ohhh, tui hiểu r.

x2 - x + \(\dfrac{1}{4}\)

⇔ x2 - 2.\(\dfrac{1}{2}\).x + \(\left(\dfrac{1}{2}\right)^2\)

⇔ \(\left(x^2-\dfrac{1}{2}\right)^2\)

8 tháng 1 2017

Bạn ơi tìm GTNN hay GTLN

29 tháng 12 2018

a)\(x\ne1;x\ne-1\)

29 tháng 12 2018

\(A=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\left(\frac{x^2+1-2x}{x^2+1}\right)\)

\(A=\left(\frac{1}{x-1}-\frac{2x}{\left(x-1\right)\left(x^2+1\right)}\right).\frac{x^2+1}{x^2+1-2x}\)

\(A=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\frac{x^2+1}{x^2+1-2x}\)

\(A=\frac{1}{x-1}\)

2 tháng 4 2018

\(b)\) \(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)

\(\Leftrightarrow\)\(\left(2x-1\right)^{2010}.\left(2x-1\right)^2=\left(2x-1\right)^{2010}\)

\(\Leftrightarrow\)\(\left(2x-1\right)^2=1\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=0\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{2}{2}\\x=\frac{0}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)

Vậy \(x=0\) hoặc \(x=1\)

Chúc bạn học tốt ~ 

6 tháng 6 2023

` @Answer`

`2,(7+3x-y)(7-3x+y)`

`=(7+3x)^2 - y^2`

`3, (6/5 - 5x)^2`

`=(6/5)^2 - 2 . 6/5 . 5x+ (5x)^2`

`= 36/25 - 12x + 25x^2`

Công thức :

`(x-y)(x+y) = x^2 - y^2`

`(x+y)^2=x^2+2xy+y^2`

`+,` Đề `1:(2x+y^2)` ngoài ngoặc có gì ạ ?

 

6 tháng 6 2023

2)

(7 + 3x - y)(7 - 3x + y)

= [7 + (3x - y)][7 - (3x + y)]

= 7² - (3x - y)²

= 49 - (3x - y)²

= 49 - (9x² - 6xy + y²)

= 49 - 9x² + 6xy - y²

15 tháng 4 2017

Tìm \(MAX\)

Ta có: \(\frac{2x+1}{x^2+2}=\frac{x^2+2-x^2+2x-1}{x^2+2}\)

\(=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)

Dấu "=" xảy ra khi \(\Leftrightarrow-\frac{\left(x-1\right)^2}{x^2+2}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy GTLN của biểu thức là \(1\) tại \(x=1\)

Tìm \(MIN\)

Ta có: \(1-\frac{\left(x-1\right)^2}{x^2+2}=-\frac{1}{2}+\frac{3}{2}-\frac{\left(x-1\right)^2}{x^2+2}\)

\(=-\frac{1}{2}+\frac{3x^2+6-2x^2+4x-2}{2\left(x^2+2\right)}\)

\(=-\frac{1}{2}+\frac{x^2+4x+4}{2\left(x^2+2\right)}=-\frac{1}{2}+\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}\ge-\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\) 

Vậy GTNN của biểu thức là \(-\frac{1}{2}\) tại \(x=-2\)

1 tháng 6 2017

A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x 
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x 
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x 
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x) 
= - x+6/x+2

a) ĐKXĐ: x≠-5

Ta có: \(\frac{2x-5}{x+5}=3\)

\(\Leftrightarrow\frac{2x-5}{x+5}-3=0\)

\(\Leftrightarrow\frac{2x-5}{x+5}-\frac{3\left(x+5\right)}{x+5}=0\)

\(\Leftrightarrow2x-5-3\left(x+5\right)=0\)

\(\Leftrightarrow2x-5-3x-15=0\)

\(\Leftrightarrow-x-20=0\)

\(\Leftrightarrow-x=20\)

\(\Leftrightarrow x=-20\)(tmđk)

Vậy: x=-20

b) ĐKXĐ: x≠1;x≠-1

Ta có: \(\frac{2}{x-1}=\frac{6}{x+1}\)

\(\Leftrightarrow\frac{2}{x-1}-\frac{6}{x+1}=0\)

\(\Leftrightarrow\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow2\left(x+1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow2x+2-6x+6=0\)

\(\Leftrightarrow-4x+8=0\)

\(\Leftrightarrow-4x=-8\)

\(\Leftrightarrow x=2\)(tmđk)

Vậy: x=2

c) ĐKXĐ: x≠1;x≠-1

Ta có: \(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\frac{2x+1}{x-1}-\frac{5\left(x-1\right)}{x+1}=0\)

\(\Leftrightarrow\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-5\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2x^2+2x+x+1-5x^2+10x-5=0\)

\(\Leftrightarrow-3x^2+13x-4=0\)

\(\Leftrightarrow-3x^2+x+12x-4=0\)

\(\Leftrightarrow x\left(-3x+1\right)+4\left(3x-1\right)=0\)

\(\Leftrightarrow x\left(1-3x\right)-4\left(1-3x\right)=0\)

\(\Leftrightarrow\left(1-3x\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\end{matrix}\right.\)(thỏa mãn điều kiện)

Vậy: \(x\in\left\{\frac{1}{3};4\right\}\)

d) ĐKXĐ: x≠1;x≠-1

Ta có: \(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x\left(x+1\right)-2x=0\)

\(\Leftrightarrow x^2+x-2x=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy: x=0

e) ĐKXĐ: x≠2

Ta có: \(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)

\(\frac{1}{x-2}+3-\frac{x-3}{2-x}=0\)

\(\frac{1}{x-2}+3+\frac{x-3}{x-2}=0\)

\(\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}+\frac{x-3}{x-2}=0\)

\(\Leftrightarrow1+3\left(x-2\right)+x-3=0\)

\(\Leftrightarrow1+3x-6+x-3=0\)

\(\Leftrightarrow4x-8=0\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)(không thỏa mãn)

Vậy: x∈∅

f) ĐKXĐ: \(x\ne\pm2\)

Ta có: \(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\frac{x+1}{x-2}+\frac{x-1}{x+2}-\frac{2\left(x^2+2\right)}{x^2-4}=0\)

\(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{2x^2+4}{\left(x+2\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-2x^2-4=0\)

\(\Leftrightarrow x^2+2x+x+2+x^2-2x-x+2-2x^2-4=0\)

\(\Leftrightarrow0=0\)

Vậy: x∈R

g) ĐKXĐ: \(x\ne\pm2\)

Ta có: \(\frac{x+2}{x-2}+\frac{1}{x+2}=\frac{x\left(x-5\right)}{x^2-4}\)

\(\frac{x+2}{x-2}+\frac{1}{x+2}-\frac{x\left(x-5\right)}{\left(x-2\right)\left(x+2\right)}=0\)

\(\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{x^2-5x}{\left(x-2\right)\left(x+2\right)}=0\)

\(\left(x+2\right)^2+x-2-x^2+5x=0\)

\(\Leftrightarrow x^2+4x+4+x-2-x^2+5x=0\)

\(\Leftrightarrow10x-2=0\)

\(\Leftrightarrow10x=2\)

\(\Leftrightarrow x=\frac{2}{10}=\frac{1}{5}\)(thỏa mãn)

Vậy: \(x=\frac{1}{5}\)

13 tháng 2 2020

cảm ơn bạn nha