K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

\(b)\) \(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)

\(\Leftrightarrow\)\(\left(2x-1\right)^{2010}.\left(2x-1\right)^2=\left(2x-1\right)^{2010}\)

\(\Leftrightarrow\)\(\left(2x-1\right)^2=1\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=0\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{2}{2}\\x=\frac{0}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)

Vậy \(x=0\) hoặc \(x=1\)

Chúc bạn học tốt ~ 

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\) \(\Leftrightarrow x^2+5x-2x-10-5=1x+5\) \(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0 \(\Leftrightarrow\) \(x^2+2x-20=0\) \(\Leftrightarrow x^2+2x-10x-20=0\) \(\Leftrightarrow\) (x\(^2\) + 2x) - (10x +...
Đọc tiếp

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\)

\(\Leftrightarrow x^2+5x-2x-10-5=1x+5\)

\(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0

\(\Leftrightarrow\) \(x^2+2x-20=0\)

\(\Leftrightarrow x^2+2x-10x-20=0\)

\(\Leftrightarrow\) (x\(^2\) + 2x) - (10x + 20) = 0

\(\Leftrightarrow\) x.(x + 2) - 10.(x + 2) = 0

\(\Leftrightarrow\)

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x\left(x+7\right)}\)

\(\Leftrightarrow\frac{\left(x-4\right).\left(x+7\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\) \(x^2+7x-4x-28-x-7=-7\)

\(\Leftrightarrow x^2+7x-4x-x-28-7+7=0\)

\(\Leftrightarrow\) x\(^2\) + 2x - 28 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 14x - 28 = 0

\(\Leftrightarrow\) (x\(^2\) + 2x) - (14x + 28) = 0

\(\Leftrightarrow\) x.(x + 2) - 14.(x + 2) = 0

\(\Leftrightarrow\) (x - 14) = 0 hoặc (x + 2) = 0

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = -2 (Loại)

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\Leftrightarrow\) \(\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow\) \(x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) 2x\(^2\) - 2x - 8x + 8 = 0

\(\Leftrightarrow\) 2x(x - 1) - 8(x - 1) = 0

\(\Leftrightarrow\) 2x - 8 = 0 hoặc x - 1 = 0

\(\Leftrightarrow\) 2x = 8 hoặc x = 1

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = 1 (Nhận)

Vậy S = {4; 1}

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

\(\Leftrightarrow\) x\(^2\) + x + x + 1 - x\(^2\) + x + x - 1 = 4

\(\Leftrightarrow\) 4x - 4 = 0

\(\Leftrightarrow\) 4 (x - 1) =0

\(\Leftrightarrow\) x - 1 = 0 / 4 = 0

\(\Leftrightarrow\) x = 1 (Nhận)

Vậy S = {1}

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x+1\right)}\)

\(\Leftrightarrow x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow\) 0

Vậy S ={\(\varnothing\)}

0
26 tháng 6 2018

a) Qui đồng rồi khử mẫu ta được:

   3(3x+2)-(3x+1)=2x.6+5.2

<=> 9x+6-3x-1 = 12x+10

<=> 9x-3x-12x  = 10-6+1

<=> -6x            = 5

<=> x               = -5/6

Vậy ....

b) ĐKXĐ: \(x\ne\pm2\)

Qui đồng rồi khử mẫu ta được:

   (x+1)(x+2)+(x-1)(x-2) = 2(x2+2)

<=> x2+3x+2+x2-3x+2 = 2x2+4

<=> x2+x2-2x2+3x-3x = 4-2-2

<=> 0x             = 0

<=> x vô số nghiệm

Vậy x vô số nghiệm với x khác 2 và x khác -2

c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)

\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)

Vậy ...... 

d) (x+1)2-4(x2-2x+1) = 0

<=> x2+2x+1-4x2+8x-4 = 0

<=> -3x2+10x-3 = 0

giải phương trình

2 tháng 2 2019

a,\(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+2.\frac{x}{x+1}.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)\(\Leftrightarrow\left(\frac{x^2-x+x^2+x}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-90=0\)\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}-10\right)\left(\frac{2x^2}{x^2-1}+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2}{x^2-1}=10\\\frac{2x^2}{x^2-1}=-9\end{cases}\Leftrightarrow......}\)

b,Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\Rightarrow ab=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x^2-4}{x^2-1}\)

Từ đó ta có phương trình:\(20a^2-5b^2+48ab=0\Leftrightarrow20a^2-2ab-5b^2+50ab=0\)

\(\Leftrightarrow2a\left(10a-b\right)+5b\left(10a-b\right)=0\Leftrightarrow\left(2a+5b\right)\left(10a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=-5b\\10a=b\end{cases}}\)

TH1:\(2a=-5b\Leftrightarrow\frac{2\left(x-2\right)}{x+1}=\frac{-5\left(x+2\right)}{x-1}\)\(\Rightarrow2\left(x-2\right)\left(x-1\right)=-5\left(x+2\right)\left(x+1\right)\)\(\Leftrightarrow2x^2-6x+4=-5x^2-15x-10\)\(\Leftrightarrow7x^2+9x+14=0\)

\(\Leftrightarrow7\left(x^2+\frac{9}{7}x+2\right)=0\Leftrightarrow7\left(x^2+2.\frac{9}{14}+\frac{81}{196}\right)+\frac{311}{28}=0\)

\(\Leftrightarrow7\left(x+\frac{9}{14}\right)^2+\frac{311}{28}=0\),vô lí
TH2:Tự làm nhé ,tương tự

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

30 tháng 3 2019

\(a,\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}x-\frac{2}{3}\)

\(\frac{13}{12}x=\frac{13}{12}\Rightarrow x=1\)

30 tháng 3 2019

\(b,\left(2x+1\right)^2=\left(x-1\right)^2\Rightarrow\orbr{\begin{cases}2x+1=x-1\\2x+1=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}}\)