Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x^4-x^2+7
=x4-2x2\(\frac{1}{2}\)+\(\frac{1}{4}\)+\(\frac{27}{4}\)
=(x2-\(\frac{1}{2}\))2+\(\frac{27}{4}\)
Vì (x2-\(\frac{1}{2}\))2\(\ge\)0 nên (x2-\(\frac{1}{2}\))2+\(\frac{27}{4}\)\(\ge\frac{27}{4}\)
Dấu = xảy ra khi x2-\(\frac{1}{2}\)=0
<=>x2=\(\frac{1}{2}\)
<=>x=\(\sqrt{\frac{1}{2}}\)hoặc x=\(-\sqrt{\frac{1}{2}}\)
Vậy GTNN của A là \(\frac{27}{4}\)tại x=\(\sqrt{\frac{1}{2}}\);\(-\sqrt{\frac{1}{2}}\)
Đặt \(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(t=x^2+5x+5\Rightarrow A=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\)
Dấu "=" xảy ra khi t = 0 <=> \(x^2+5x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)
Vậy Min A = -1 \(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)
\(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\) ,ta có :
\(\left(t+4\right)\left(t+6\right)\)
\(=t^2+4t+6t+24\)
\(=t^2+10t+24\)
\(=t^2+2.t.5+5^2-1\)
\(=\left(t+5\right)^2-1\)
Ta có :
\(\left(t+5\right)^2\ge0\) với mọi x
\(\Rightarrow\left(t+5\right)^2-1\ge-1\) với mọi x
Dấu = xảy ra khi \(\left(t+5\right)^2=0\Rightarrow t+5=0\Rightarrow t=-5\)
Vậy \(Min_M=-1\Leftrightarrow x=-5\)
Bạn zô đây làm theo ấy:https://hoc247.net/hoi-dap/toan-10/tim-gtnn-cua-a-x-4-3x-2-2-faq426506.html
X4+(3-X)2= (x2)2+(3-x)2=(x2+3+x)(x2-3+x)
sai rồi, tổng 2 bình phương chứ có phải hiệu 2 bình phương đâu mà dùng hằng đẳng thức đó
B=2x^2-x^3
x=0=>B=0
xét khi x<0=> B=2x^2+!x!^3>0
xét khi x>0
khi x=2=>B=0
khi x<2 => 2x^2>x.x^2=x^3=> B>0
khi x>2=> 2.x^2=>2.x^2<x.x^2=> B<0
khi x>2 thi x càng lớn IBI càng lớn => B càng nhỏ
=> GTNN(B) dat khi x =4
GTNN+4.-2=-8
4x-3x^2=x(4-3x)
x=0
x=4/3
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
\(A=x^4+x^2+2\)
\(=\left(x^2\right)^2+x^2\cdot2\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{7}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\)
có : \(\left(x^2+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(\Rightarrow A\ge\frac{7}{4}\)
dấu "=" xảy ra khi :
\(\left(x^2+\frac{1}{2}\right)^2=0\)
\(\Rightarrow x^2+\frac{1}{2}=0\)
\(\Rightarrow x^2=-\frac{1}{2}\Rightarrow x\in\varnothing\)