K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Đặt \(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

Đặt \(t=x^2+5x+5\Rightarrow A=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\)

Dấu "=" xảy ra khi t = 0 <=> \(x^2+5x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)

Vậy Min A = -1 \(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)

16 tháng 7 2016

chiu thoi

22 tháng 10 2017

\(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x=t\) ,ta có :

\(\left(t+4\right)\left(t+6\right)\)

\(=t^2+4t+6t+24\)

\(=t^2+10t+24\)

\(=t^2+2.t.5+5^2-1\)

\(=\left(t+5\right)^2-1\)

Ta có :

\(\left(t+5\right)^2\ge0\) với mọi x

\(\Rightarrow\left(t+5\right)^2-1\ge-1\) với mọi x

Dấu = xảy ra khi \(\left(t+5\right)^2=0\Rightarrow t+5=0\Rightarrow t=-5\)

Vậy \(Min_M=-1\Leftrightarrow x=-5\)

30 tháng 9 2016

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)\)

\(=\left(x^2+3x+1\right)^2-1\ge-1\) với moi x

Dấu "=" xảy ra <=> x2+3x+1=0

<=>\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0< =>\left(x+\frac{3}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)

\(< =>\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)=0\)

<=>..... (x có 2 nghiệm)

Vậy Min của...=-1 khi.............

28 tháng 9 2017

cần gấp

11 tháng 4 2020

Bạn zô đây làm theo ấy:https://hoc247.net/hoi-dap/toan-10/tim-gtnn-cua-a-x-4-3x-2-2-faq426506.html

X4+(3-X)2= (x2)2+(3-x)2=(x2+3+x)(x2-3+x)

8 tháng 9 2021

sai rồi, tổng 2 bình phương chứ có phải hiệu 2 bình phương đâu mà dùng hằng đẳng thức đó

 

6 tháng 3 2017

\(P=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(P=\left(x^2+5x\right)^2-36\)

\(P=\left[x\left(x+5\right)\right]^2-36\)

Vậy GTNN của P = -36 khi x = 0 hoặc -5.

7 tháng 4 2016

A=[(x-1)(x+6)][(x+2)(x+3)]

=(x2+5x-6)(x2+5x+6)

=(x2+5x)2-36

Ta thấy (x2+5x)2  >=0 nên (x2+5x)2-36 >=-36

Vậy GTNN của A là -36