K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)

=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)

Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)

Vậy Min A  = -1 <=> X = -1/6

1 tháng 6 2021

a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)

Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6

15 tháng 3 2017

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

14 tháng 7 2018

\(A=\frac{x-3}{x+2}=\frac{x+2-5}{x+2}=\frac{x+2}{x+2}-\frac{5}{x+2}=1-\frac{5}{x+2}\)

để A đạt gtnn thì \(\frac{5}{x+2}\) lớn nhất

=> x + 2 là số nguyên dương nhỏ nhất

=> x + 2 = 1

=> x = -3

vậy___

14 tháng 7 2018

\(\frac{x-3}{x+2}=\frac{x+2-5}{x+2}=1-\frac{5}{x+2}\)

Để phân số đó có giá trị lớn nhất thì x + 2 phải nhỏ nhất

Mà 5 là số nguyên dương nên nó lớn nhất khi x + 2 > 0 <=> x > -2

Để phân số đó có giá trị nhỏ nhất thì x + 2 lớn nhất

=> x + 2 < 0 <=> x < - 2

DD
28 tháng 5 2021

a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)

Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).

b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)

Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).

28 tháng 5 2021

Tìm GTNN và GTLN mà

10 tháng 6 2020

Ta có: \(A=\left|x-1\right|+\left|x-2\right|+\left|x-6\right|=\left|x-1\right|+\left|x-6\right|+\left|x-2\right|\)

Xét \(\left|x-1\right|+\left|x-6\right|\)ta có: 

\(\left|x-1\right|+\left|x-6\right|=\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=\left|5\right|=5\)(1)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(6-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-1< 0\\6-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\6< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>6\end{cases}}\)( vô lý )

TH2: \(\hept{\begin{cases}x-1\ge0\\6-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\6\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le6\end{cases}}\Leftrightarrow1\le x\le6\)

Ta có: \(\left|x-2\right|\ge0\forall x\)(2)

Từ (1) và (2) \(\Rightarrow\left|x-1\right|+\left|x-6\right|+\left|x-2\right|\ge5\)

hay \(A\ge5\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}1\le x\le6\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le6\\x=2\end{cases}}\Leftrightarrow x=2\)

Vậy \(minA=5\)\(\Leftrightarrow x=2\)

6 tháng 3 2023

A = 2(2x + 3)2 + 5

vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5 

A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)

26 tháng 8 2016

a/ A = x2 + (y - 1)4 - 3

Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0

=> A = x2 + (y - 1)4 - 3 \(\ge\)-3

Đẳng thức xảy ra khi: x = 0 và y - 1 = 0  => x = 0 và y = 1

Vậy GTNN của A là -3 khi x = 0 và y = 1

b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995 

Mà: 3x2\(\ge\)0  => B = 3x2 + 1995 \(\ge\)1995

Đẳng thức xảy ra khi: 3x2 = 0  => x = 0

Vậy GTNN của B là 1995 khi x = 0

c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15 

Mà: x2\(\ge\)0  => x2 - 15\(\ge\)-15

Đẳng thức xảy ra khi: x2 = 0  => x = 0

Vậy GTNN cảu C là -15 khi x = 0