K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 1 2022

\(H=\left|3-x\right|+\left|4+x\right|\ge\left|3-x+4+x\right|=7\)

\(H_{min}=7\) 

16 tháng 12 2018

\(H=|x-3|+|4-x|\ge|x-3+4-x|=1\)

Dấu "=" xảy ra <=> x=3

16 tháng 12 2018

\(H=\left|x-3\right|+\left|4-x\right|\ge\left|x-3+4-x\right|=1\)

Dau "=" xra  <=>  \(\left(x-3\right)\left(4-x\right)\ge0\)  ,=>  \(3\le x\le4\)

31 tháng 7 2017

x-2* căn(x-2)+3.tìm gtnn.

Ta có: \(\left|x-2\right|\ge x-2\)

          \(\left|x-3\right|\ge0\)

          \(\left|x-4\right|=\left|4-x\right|\ge4-x\)

\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2\ge0\\x-3=0\\x-4\le0\end{cases}\Rightarrow}x=3\)

30 tháng 10 2020

Đặt A = | 3 - x | + | 4 - x | + 20

=> A = | x - 3 | + | 4 - x | + 20

Áp dụng BĐT | a | + | b |\(\ge\)| a + b |

=> | x - 3 | + | 4 - x |\(\ge\)| x - 3 + 4 - x | = | 1 | = 1

=> A\(\ge\)1 + 20 = 21

Dấu "=" xảy ra <=>\(3\le x\le4\)

Vậy minA = 21 <=>\(x\in\left\{3;4\right\}\)

30 tháng 10 2020

Đặt \(A=\left|3-x\right|+\left|4-x\right|+20\)

\(\Rightarrow A=\left|x-3\right|+\left|4-x\right|+20\ge\left|x-3+4-x\right|+20=\left|1\right|+20=1+20=21\)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-3\right)\left(4-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-3\le0\\4-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\4\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge4\end{cases}}\)( vô lý )

TH2: \(\hept{\begin{cases}x-3\ge0\\4-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\4\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le4\end{cases}}\Leftrightarrow3\le x\le4\)

Vậy \(minA=21\)\(\Leftrightarrow3\le x\le4\)

30 tháng 10 2020

| 3 - x | + | 4 - x | + 20

= | 3 - x | + | x - 4 | + 20

Ta có : | 3 - x | + | x - 4 | ≥ | 3 - x + x - 4 | = |-1| = 1

=> | 3 - x | + | x - 4 | + 20 ≥ 1 + 20 = 21

Dấu "=" xảy ra <=> ( 3 - x )( x - 4 ) = 0

=> 3 ≤ x ≤ 4

Vậy GTNN của biểu thức = 21 <=> 3 ≤ x ≤ 4

30 tháng 10 2020

Đặt A = |3 - x| + |4 - x| + 20 = |x - 3| + |4 - x| + 20\(\ge\left|x-3+4-x\right|+20=\left|1\right|+20=21\)

Dấu "=" xảy ra <=> \(\left(x-3\right)\left(4-x\right)\ge0\)

Xét các trường hợp

TH1 : \(\hept{\begin{cases}x-3\ge0\\4-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge3\\x\le4\end{cases}\Rightarrow3\le x\le4}\)

TH2 : \(\hept{\begin{cases}x-3\le0\\4-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le3\\x\ge4\end{cases}}\left(\text{loại}\right)\)

Vậy Min A = 21 <=> \(3\le x\le4\)