Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=43x-\left(52x^2+34x^2-8x^4\right)-\left(8x^4+16x^3-42x^2+43x\right)+19\)
\(\Leftrightarrow A\left(x\right)=43x-86x^2+8x^4-16x^3+42x^2-43x+19\)
\(\Leftrightarrow A\left(x\right)=-16x^3-44x^2+19\)
Bậc là: 3
\(16x^2-9=\left(4x-3\right)\left(4x+3\right)\)
\(16x^2-8x+1=\left(4x-1\right)^2\)
1. 2x2-x=0
<=>x(2x-1)=o
=>x=0 hoặc x=1/2
2.A(x)4x2-8x+5/2=4(x-1/2)2+1/2
Vì 4(x-1/2)2>=o với mọi x
nên 4(x-1/2)2+1/2>=1/2 với mọi x
Dấu "="xảy ra khi và chỉ khi x-1/2=0<=> x= 1/2
Vậy GTNN của A=1/2 khi x= 1/2
Bài 1:\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Bài 2:\(A\left(x\right)=\frac{4x^2-8x+5}{2}=\frac{4\left(x^2-2x+1\right)+1}{2}=\frac{4\left(x-1\right)^2+1}{2}=2\left(x-1\right)^2+\frac{1}{2}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\Rightarrow A=2\left(x-1\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=>\(A_{min}=\frac{1}{2}\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
a/\(16x-81x^5=0\)
\(\Rightarrow x\left(16-81x^4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\16-81x^4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\81x^4=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^4=\dfrac{16}{81}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là \(x\in\left\{0;\dfrac{2}{3}\right\}\)
b/\(x^2-7x=0\)
\(\Rightarrow x\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
Vậy nghiệm của đa thức là \(x\in\left\{0;7\right\}\)