K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

umk cái này căng vì lp 7 chưa học bất đẳng thức ( nếu hoặc học thêm có thể có)

ta có |x-2018|+|x-2019| = | x-2018|+|2019-x|

>= |x-2018+2019-x| = |1| = 1

=> GTNN của Bt = 1

dấu "=" xảy ra (=) (x-2018)(2019-x)>=0

(=) hoặc 2018<=x<=2019 

Note: nếu giáo viên hỏi j thêm bn cứ nói em hỏi anh chị lớp trên ( anh chị ruột hay họ j cx đc) chứ đừng nói tự mày mò ra nha

học tốt

2 tháng 11 2019

                                                               Bài giải

Ta có :

\(\text{Đặt }\left|x-2018\right|+\left|x-2019\right|=\left|x-2018\right|+\left|2019-x\right|\ge\left|x-2018+2019-x\right|=\left|1\right|=1\)

\(\Rightarrow\text{ }Min\text{ A }=1\)

23 tháng 7 2019

\(M=2018+\left(x-2019\right)^{2018}\)

\(\left(x-2019\right)^{2018}\ge0\Rightarrow M\ge2018\)

Vậy Mmin = 2018 khi x = 2019

\(M=2018+\left(x-2019\right)^{2018}\)

Ta có : \(\left(x-2019\right)^{2018}\ge0\forall x\)

\(2018+\left(x-2019\right)^{2018}\ge2018\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2019\right)^{2018}=0\)

\(\Leftrightarrow x-2019=0\)

\(\Leftrightarrow x=2019\)

Vậy : min\(M=2018\) tại x = 2019.

3 tháng 10 2018

a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)

\(\Rightarrow A\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)

b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)

\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)

Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)

\(\Rightarrow B\le3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)

3 tháng 10 2018

với mọi x thì (2x+1/4)4>=0 (lớn  hơn hoặc bằng )

A=(2x+1/4)4-1>=-1

để A đạt GTNN thì (2x+1/4)4=0

2x+1/4=0 =>x=-1/8

22 tháng 10 2018

mi tự làm lấy

13 tháng 2 2016

Ta có /x+1/ >/ 0 với mọi x

=> A>/ 5 với mọi x

=>Amax=5

Dấu "=" xảy ra<=>x+1=0<=>x=-1

B=(x^2+3)+12/(x^2+3)=1+(12/x^2+3)

 ta có x^2+3 >/ 3 với mọi x

=>12/x^2+3 </ 12/3=4 với mọi x

=>B </ 1+4=5 với mọi x

Dấu "=" xảy ra<=>x=0

Vậy...

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

17 tháng 11 2019

Bài 2:

\(C=\frac{2019}{\sqrt{x}+3}\)

Vì C có tử = 2019 ko đổi

\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min

+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)

+Dấu ''='' xảy ra khi ......tự lm :))

\(\Rightarrow\)Mẫu đạt min = 3 khi x=...

\(\Rightarrow\)C max = ... khi x=....

17 tháng 11 2019

BÀi 1:

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)

+Dấu ''='' xảy ra khi

\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)

\(\Leftrightarrow x=2019\)

+Vậy \(B_{min}=2\) khi \(x=2019\)