Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(C=4x^2+y^2+4x-6y+14\)
\(C=\left(4x^2+4x+1\right)+\left(y^2-6x+9\right)+4\)
\(C=\left(2x+1\right)^2+\left(y-3\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y-3=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}2x=-1\\y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}}\)
Vậy GTNN của \(C\) là \(4\) khi \(x=\frac{-1}{2}\) và \(y=3\)
Chúc bạn học tốt ~
\(C=4x^2+y^2+4x-6y+14\)
\(C=\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)+4\)
\(C=\left(2x+1\right)^2+\left(y-3\right)^2+4\)
Mà \(\left(2x+1\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow C\ge4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x+1=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)
Vậy \(C_{Min}=4\Leftrightarrow\left(x;y\right)=\left(-\frac{1}{2};3\right)\)
A = (2m-5)^2 -(2m+5)^2 +40m
= 4m^2 -20m+25 -(4m^2 +20m+25) + 40m
= 4m^2 -20m+25 -4m^2 -20m -25 + 40m
= 0.
Vậy biểu thức A ko phụ thuộc vào biến.
Bài 2:
Gọi 2 số nguyên liên tiếp là a và a+1 (a thuộc Z)
Ta có: (a+1)^2 -a^2
= a^2 +2a +1- a^2
= 2a+1
Mà 2a+1 là số lẻ nên (a+1)^2 -a^2 là số lẻ.
Vậy hiệu các bình phương của 2 số nguyên liên tiếp là số lẻ.
Bài 3:
P = (3x+4)^2 -10x- (x-4)(x+4)
= 9x^2 +24x +16 -10x - (x^2 -16)
= 9x^2 +24x +16 -10x -x^2 +16
= 8x^2 +14x +32
Bài 4:
Ta có: x^2 -4x+5
= (x^2 -4x+4)+ 1
= (x-2)^2 + 1
Vì (x-2)^2 >=0 với mọi x nên (x-2)^2 + 1 >=1 với mọi x.
Do đó: P = x^2 -4x+5 >=1 với mọi x.
Dấu "=" xảy ra khi: (x-2)^2 = 0
x-2 = 0
x = 2
Vậy GTNN của P là 1 tại x = 2.
Chúc bạn học tốt.
\(E=22x-23-5x+2-3x+1\)
\(=14x-20\)
\(=14\cdot\dfrac{-2}{3}-20=\dfrac{-28}{3}-\dfrac{60}{3}=-\dfrac{88}{3}\)
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Rightarrow8x+16-5x^2-10x+4x^2+4x-8x-8=x^2-4\)
\(\Rightarrow-6x-x^2-8-x^2+4=0\)
\(\Rightarrow-6x-2x^2-4=0\)
\(\Rightarrow-2\left(3x+x^2+2\right)=0\)
\(\Rightarrow\left(x+1,5\right)^2-0,25=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}}\)
B1 Xét (7x+1)\(^2\)-(x+7)\(^2\)-48(x\(^2\)-1)
=49\(x^2\)+14x+1-x\(^2\)-14x-49-48x\(^2\)+48
=0
Vậy \(\left(7x+1\right)^2-\left(x+7\right)^2=48\left(x^2-1\right)\)
B2 \(16x^2-\left(4x-5\right)^2=15\)
(4x)\(^2\)-(4x-5)\(^2\)-15=0
(4x-4x+5)(4x+4x-5)-15=09x-5)=0
5(8x-5)-15=0
40x-25-15=0
40x-40=0
x =1
câu B3 mình không bik làm
chúc bạn học tốt ~~~
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
Ta có : B = \(3x^2+x+5\)
\(=2x^2+x^2+x+\frac{1}{4}+\frac{19}{4}\)
\(=2x^2+\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\)
Vì \(2x^2\ge0\forall x\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(B=2x^2+\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\ge0+0+\frac{19}{4}=\frac{19}{4}\)
Vậy \(B_{min}=\frac{19}{4}\) hơ icos vấn đề