K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

 A = (2m-5)^2 -(2m+5)^2 +40m

     = 4m^2 -20m+25 -(4m^2 +20m+25) + 40m

     = 4m^2 -20m+25 -4m^2 -20m -25 + 40m

     = 0.

Vậy biểu thức A ko phụ thuộc vào biến.

Bài 2:

Gọi 2 số nguyên liên tiếp là a và a+1 (a thuộc Z)

Ta có: (a+1)^2 -a^2 

         = a^2 +2a +1- a^2

         = 2a+1

Mà 2a+1 là số lẻ nên (a+1)^2 -a^2 là số lẻ.

Vậy hiệu các bình phương của 2 số nguyên liên tiếp là số lẻ.

Bài 3: 

 P = (3x+4)^2 -10x- (x-4)(x+4)

     = 9x^2 +24x +16 -10x - (x^2 -16)

     = 9x^2 +24x +16 -10x -x^2 +16

     = 8x^2 +14x +32

Bài 4: 

 Ta có:  x^2 -4x+5

          = (x^2 -4x+4)+ 1

          = (x-2)^2 + 1

Vì (x-2)^2 >=0 với mọi x nên (x-2)^2 + 1 >=1 với mọi x.

Do đó: P = x^2 -4x+5 >=1 với mọi x.

Dấu "=" xảy ra khi: (x-2)^2 = 0

                                  x-2 = 0

                                  x = 2

Vậy GTNN của P là 1 tại x = 2.

Chúc bạn học tốt.

22 tháng 9 2021

m đâu ????

22 tháng 9 2021

\(1,\\ A=\left(4x^2+y^2\right)\left(4x^2-y^2\right)=16x^4-y^4\)

Đề sai, biểu thức A ko có m thì sao chứng minh?

\(2,\) Gọi 2 số nguyên lt là \(a;a+1\left(a\in Z\right)\)

Ta có \(a+1-a=1\) là số lẻ (đpcm)

\(3,P=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)

\(4,Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)

30 tháng 7 2018

Bài 1 : (x + 5)- x3 - 125

= (x + 5 - x)[(x + 5)2 + x(x + 5) + x2] - 125

= 5(x2 + 10x + 25 + x2 + 5x + x2)

= 5(3x2 + 15x + 25) - 125

= 5(3x2 + 15x + 25 - 25)

= 5(3x2 + 15x)

30 tháng 7 2018

1/ \(\left(x+5\right)^3-x^3-125\)

\(\left(x+5\right)^3-\left(x^3+125\right)\)

\(x^3+125+15x\left(x+5\right)-\left(x^3+125\right)\)

\(15x\left(x+5\right)\)

29 tháng 8 2017

1) ta có : \(A=\left(2m-5\right)^2-\left(2m+5\right)^2+40\)

\(A=4m^2-20m+25-\left(4m^2+20m+25\right)+40\)

\(A=4m^2-20m+25-4m^2-20m-25+40\)

\(A=40-40m\) ta có : \(A\) phụ thuộc vào biến \(m\)

\(\Rightarrow\) đề sai

câu 3 quá dể bn tự lm nha

3) \(P=\left(3x+4\right)^2-10x-\left(x-4\right)\left(x+4\right)\)

\(P=9x^2+24x+16-10x-\left(x^2-4\right)\)

\(P=9x^2+24x+16-10x-x^2+4=8x^2+14x+20\)

4) \(Q=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

ta có : \(\left(x-2\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x-2\right)^2+1\ge1\) với mọi \(x\)

\(\Rightarrow\) GTNN của Q là 1 khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

vậy GTNN của Q là 1 khi \(x=2\)

29 tháng 8 2017

nguyễn rhij : hay bn chép sai đề