Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=9x^2+y^2-6x+3y+5\)
\(=\left(9x^2+6x+1\right)+\left(y^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)
\(=\left(3x+1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{3}\) và \(y=-\dfrac{3}{2}\)
\(A=\left(x+3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=-3\\ B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{29}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{29}{4}\ge-\dfrac{29}{4}\\ B_{min}=-\dfrac{29}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ C=\left(9x^2-12x+4\right)+2017=\left(3x-2\right)^2+2017\ge2017\\ C_{min}=2017\Leftrightarrow x=\dfrac{2}{3}\)
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
A=9x2+6x+11=(9x2+6x+1)+10=(3x+1)2+10
\(3x+1\ge0\)
=>GTNN của biểu thức A là 10
A=9x2+6x+11
=9x2 +6x+1-1+11
=(3x+1)2+10
Do (3x+1)2\(\ge\)0 \(\forall\)x
=>(3x+1)2+10\(\ge\) 10
=>A\(\ge\) 10
GTNN A=10 khi 3x+1=0
=> 3x=-1
=> x=-\(\dfrac{1}{3}\)
\(A=\frac{2}{6x-5-9x^2}\)
\(\Leftrightarrow A=\frac{-2}{9x^2-6x+5}\)
\(\Leftrightarrow A=\frac{-2}{\left(3x-1\right)^2+4}\)
Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{1}{\left(3x-1\right)^2+4}\le\frac{1}{4}\)
\(\Rightarrow\frac{-2}{\left(3x-1\right)^2+4}\ge\frac{-2}{4}\)
\(\Rightarrow A\ge\frac{-1}{2}\)
\(MinA=\frac{-1}{2}\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
Ta có: A = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> \(3x-1=0\) <=> \(x=\frac{1}{3}\)
Vậy MinA = -1/2 <=> x= 1/3
Nhân A với mẫu rồi viết theo phương trình bậc 2 ẩn x, tham số A tình den ta là được
Ta có : \(C=\frac{2}{6x-5-9x^2}\)
\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)
\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)
Để C đạt giá trị nhỏ nhất
\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất
Ta có : \(\left(3x-1\right)^2+4\ge4\)
Dấu " = " xảy ra :
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)
Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?
2/(-(9x^2-6x+5)=-2/((9x^2-6x+1)+4)
GTNN là -2/4
giỏi quá tuấn ơi!