Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=9x^2+y^2-6x+3y+5\)
\(=\left(9x^2+6x+1\right)+\left(y^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)
\(=\left(3x+1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{3}\) và \(y=-\dfrac{3}{2}\)
Bài 2 :
\(A=4x^2-2.2x.2+4+1\)
\(=\left(2x-2\right)^2+1\)
Thấy : \(\left(2x-2\right)^2\ge0\)
\(A=\left(2x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow x=1\)
\(B=\left(5x\right)^2-2.5x.1+1-4\)
\(=\left(5x-1\right)^2-4\)
Thấy : \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)
Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)
\(C=\left(7x\right)^2-2.7x.2+4-5\)
\(=\left(7x-2\right)^2-5\)
Thấy : \(\left(7x-2\right)^2\ge0\)
\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)
Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)
\(1.\)
\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)
\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)
\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5
\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)
\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)
\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)
dấu"=" xảy ra<=>x=1/4
ta có \(A=x^2+y^2+9-2xy-6x+6y+x^2-4x+4+2004\)
\(=\left(x-y-3\right)^2+\left(x-2\right)^2+2004\)
vì \(\left(x-y-3\right)^2+\left(x-2\right)^2\ge0\)
=> \(A\ge2004\)
dấu = xảy ra <=> x=2 và y=-1
a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)
\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)
d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
b: Ta có: \(B=x^2+4x+9y^2-6y-1\)
\(=x^2+4x+4+9y^2-6y+1-6\)
\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)
Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)
a) Ta có: \(\left(y+3\right)\left(y^2-3y+9\right)-\left(60-y^3\right)\)
\(=y^3+27-60+y^3\)
\(=2y^3-33\)
b) Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)