K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm GTTN của biểu thức :

\(A=\left(3x+4\right)^4-5\)

Ta có : \(\left(3x+4\right)^4\ge0\)

\(\Rightarrow A\ge-5\)

\(MinA=-5khix=\frac{-4}{3}\)

Học tốt!

29 tháng 1 2016

ai kết bạn không

29 tháng 1 2016

ai kết bạn không

30 tháng 9 2020

a) Vì \(\hept{\begin{cases}\left|4x-3\right|\ge0\forall x\\\left|5y+7\right|\ge0\forall y\end{cases}}\Rightarrow\left|4x-3\right|+\left|5y+7\right|\ge0\forall x,y\)

=> \(\left|4x-3\right|+\left|5y+7\right|+17,5\ge17,5\forall x\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-\frac{7}{5}\end{cases}}\)

Vậy GTNN là 17,5 khi x = 3/4,y = -7/5

b) \(2\left|3x-1\right|-4\)

Vì |3x - 1| \(\ge\)\(\forall\)x

=> 2|3x - 1| - 4 \(\ge\)-4\(\forall\)x

Dấu " = " xảy ra khi và chỉ khi |3x - 1| = 0 => x = 1/3

Vậy GTNN là -4 khi x = 1/3

c) Đây là GTLN mà ?

Vì \(\hept{\begin{cases}\left|5-2x\right|\ge0\forall x\\\left|3y+12\right|\ge0\forall y\end{cases}}\Rightarrow\left|5-2x\right|-\left|3y+12\right|\ge0\forall x,y\)

=> \(4-\left|5-2x\right|-\left|3y+12\right|\le4\forall x,y\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|5-2x\right|=0\\\left|3y+12\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-4\end{cases}}\)

Vậy GTLN là 4 khi x = 5/2,y = -4

16 tháng 7 2015

Nguyễn Nam Cao nói thế là ko được

17 tháng 10 2017

ta có : |x+3|+|x-7|=|x+3|+|7-x|>=|x+3+7-x|=10

dấu "=" xảy ra khi (x+3)(7-x)>=0

giải ra ta đc:  -3<=x<=7,

lại có |2x-5|>=0 dấu "=" xảy ra khi 2x-5=0=> x=2,5 (t/m)

=> A>=10+0+8=18 khi x=2,5

30 tháng 1 2018

Với mọi x t có :

\(\left|3x-1\right|\ge0\)

\(\Leftrightarrow2\left|3x-1\right|\ge0\)

\(\Leftrightarrow2\left|3x-1\right|-4\ge-4\)

\(\Leftrightarrow A\ge-4\)

Dấu "=" xảy ra khi : \(\left|3x-1\right|=0\)

\(\Leftrightarrow x=\frac{1}{3}\)

Vậy \(A_{Min}=-4\Leftrightarrow x=\frac{1}{3}\)

23 tháng 3 2021

GTNN của A > hoặc =0 thì x=0;1 và A=5