Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(F=2\left|3x-2\right|-1\)
Vì \(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)
\(\Rightarrow2\left|3x-2\right|-1\ge-1\)
''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)
=> \(F_{min}=-1\)
b) \(G=x^2+3\left|y-2\right|-1\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)
=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy \(G_{min}=-1\)
\(A=2\left|3x-2\right|-1\ge-1\)
Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)
\(B=x^2+3\left|y-2\right|-1\ge-1\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vì (2x+1)^2 \(\ge\) 0, (3x-2y)^2 \(\ge\) 0 \(\Rightarrow\) (2x+1)^2 + (3x-2y) + 2005 \(\ge\) 2005
Vậy A có GTNN là 2005
\(A=x^2-5x+1=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{21}{4}=\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\)
nên \(\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Vậy \(Min_{x^2-5x+1}=-\frac{21}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
\(B=1-x^2+3x=-\left(x^2-3x-1\right)=-\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\)Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)
nên \(-\left(x-\frac{3}{2}\right)^2\le0\)
do đó \(-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\)
Vậy \(Max_{1-x^2+3x}=\frac{13}{4}\)khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Ta có :
\(\sqrt{x-1}\ge0\)
\(\Rightarrow2+\sqrt{x-1}\ge2\)
\(\Rightarrow Min_A=2\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
\(A=x^2-3x+1\)
\(=x^2-2x\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1\)
\(=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}+\frac{4}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\) \(\forall\) \(x\) \(\Rightarrow\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\) \(\forall\) \(x\)
Vậy GTNN của A là \(-\frac{5}{4}\) tại \(x=\frac{3}{2}\)