K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

a) \(F=2\left|3x-2\right|-1\)

\(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)

\(\Rightarrow2\left|3x-2\right|-1\ge-1\)

''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)

=> \(F_{min}=-1\)

b) \(G=x^2+3\left|y-2\right|-1\)

Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)

''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy \(G_{min}=-1\)

19 tháng 10 2017

\(A=2\left|3x-2\right|-1\ge-1\)

Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)

\(B=x^2+3\left|y-2\right|-1\ge-1\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

24 tháng 10 2017

Bài này chỉ tìm được \(GTNN\) thôi bạn nhé!

\(F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\\ \text{Do }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow\dfrac{1}{2}\left(x-1\right)^2\ge0\forall x\\ F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\ge\dfrac{1}{3}\forall x\)

Dấu \("="\) xảy ra khi :

\(\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)

Vậy \(F_{\left(Min\right)}=3\) khi \(x=1\)

a: \(2\left(x-1\right)^2+3\ge3\)

nên \(A=\dfrac{1}{2\left(x-1\right)^2+3}\le\dfrac{1}{3}\)

Dấu '=' xảy ra khi x=1

b: \(C=x^4+3x^2+2\ge2\)

Dấu '=' xảy ra khi x=0

d: \(E=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Dấu '=' xảy ra khi x=1 và y=-2

e: \(F=2\left|3x-2\right|-1\ge-1\)

Dấu '=' xảy ra khi x=2/3

26 tháng 11 2016

Lam giup minh voi

19 tháng 12 2017

GTNN?

22 tháng 5 2018

giá trị nhỏ nhất đó bn

28 tháng 10 2019

a,  1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020​ + (-2) ≥ (-2) => A ≥ -2

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)

Vậy GTNN A = -2 khi x = 2019 và y = 1

2, Ta có: |x - 3| = |3 - x|

Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1

=> C ≥ 1 - 5 => C ≥ -4

Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0

+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)

+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)

Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3

b,

1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9

Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5

Vậy GTLN B = 9 khi x = 5 hoặc x = -5

2, Đk: x ≠ 5

 \(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)

Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6

=> \(D=1+1=2\)

Vậy GTLN của D = 2 khi x = 6

8 tháng 5 2020

1) \(M=\frac{x^2+y^2+7}{x^2+y^2+5}=1+\frac{2}{x^2+y^2+5}\)

Ta có: \(x^2+y^2\ge0,\forall x;y\)

=> \(x^2+y^2+5\ge5\) với mọi x; y 

=> \(\frac{2}{x^2+y^2+5}\le\frac{2}{5}\)

=> \(M\le1+\frac{2}{5}=\frac{7}{5}\)

Dấu "=" xảy ra <=> x = y = 0 

Vậy max M = 7/5 đạt tại x = y = 0 

2) \(f\left(x-1\right)=x^2-3x+5=x^2-x-2x+2+3\)

\(=x\left(x-1\right)-2\left(x-1\right)+3=x\left(x-1\right)-\left(x-1\right)-\left(x-1\right)+3\)

\(=\left(x-1\right)\left(x-1\right)-\left(x-1\right)+3\)

=> \(f\left(x\right)=x.x-x+3=x^2-x+3\)