K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C\ge2021\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\3y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

  Vậy \(C_{Min}=2021\) khi \(x=\dfrac{3}{2}\) và \(y=-\dfrac{1}{3}\)

9 tháng 7 2021

Vì |2x - 3| \(\ge\) 0, \(\forall\)x     ;    |3y + 1| \(\ge\) 0,\(\forall\)y

\(\Rightarrow\) C = 2020|2x - 3| + 2021|3y + 1| + 2021 \(\ge\) 2021, \(\forall\)x,y

Dấu " = " xảy ra khi và chỉ khi :

\(\left\{{}\begin{matrix}\left|2x-3\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy Cmin = 2021 với \(x=\dfrac{3}{2};y=-\dfrac{1}{3}\)

6 tháng 11 2018

Ta có : |3x - 20| - |3x - 10| \(\le\left|3x-20-3x+10\right|=\left|-10\right|=10\)

Vậy GTLN = 10 khi x = 0

28 tháng 1 2023

ủa tìm x thì p có dầu bằng chứ?

bn ktra lại xem

AH
Akai Haruma
Giáo viên
15 tháng 6 2023

Yêu cầu đề là gì vậy bạn?