Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |3x - 20| - |3x - 10| \(\le\left|3x-20-3x+10\right|=\left|-10\right|=10\)
Vậy GTLN = 10 khi x = 0
1.a) ĐK : \(3-2x\ge0\forall x\Rightarrow x\le\frac{3}{2}\)
Khi đó : \(\left|\frac{1}{2}x\right|=3-2x\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=3\\\frac{3}{2}x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=2\end{cases}}\left(tm\right)\)
Vậy \(x\in\left\{\frac{6}{5};2\right\}\)
b) ĐK : \(3x+2\ge0\Rightarrow x\ge\frac{-2}{3}\)
Khi đó : \(\left|x-1\right|=3x+2\Leftrightarrow\orbr{\begin{cases}x-1=3x+2\\x-1=-3x-2\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=3\\4x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1,5\\x=-0,25\left(tm\right)\end{cases}}\)
Vậy x = -0,25
c) ĐKXĐ : \(x-12\ge0\Rightarrow x\ge12\)
Khi đó |5x| = x - 12
<=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\left(\text{loại}\right)\)
Vậy \(x\in\varnothing\)
d) ĐK : \(5x+1\ge0\Rightarrow x\ge-\frac{1}{5}\)
Khi đó \(\left|17-x\right|=5x+1\Leftrightarrow\orbr{\begin{cases}17-x=5x+1\\17-x=-5x-1\end{cases}}\Rightarrow\orbr{\begin{cases}6x=16\\-4x=18\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\left(tm\right)\\x=-4,5\left(\text{loại}\right)\end{cases}}\)
Vậy x = 8/3
Tóm lại : Cách làm là
|f(x)| = g(x)
ĐK : g(x) \(\ge0\)
=> \(\orbr{\begin{cases}f\left(x\right)=-g\left(x\right)\\f\left(x\right)=g\left(x\right)\end{cases}}\)
Bạn tự làm tiếp đi ak
\(C\ge2021\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\3y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=2021\) khi \(x=\dfrac{3}{2}\) và \(y=-\dfrac{1}{3}\)
Vì |2x - 3| \(\ge\) 0, \(\forall\)x ; |3y + 1| \(\ge\) 0,\(\forall\)y
\(\Rightarrow\) C = 2020|2x - 3| + 2021|3y + 1| + 2021 \(\ge\) 2021, \(\forall\)x,y
Dấu " = " xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left|2x-3\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy Cmin = 2021 với \(x=\dfrac{3}{2};y=-\dfrac{1}{3}\)
Ta có: A = 25 - |3x - 6| - |3x + 8|
A = 25 - (|6 - 3x| + |3x + 8|) < = 25 - |6 - 3x + 3x + 8| = 25 - |14| = 25 - 14 = 11
Dấu "=" xảy ra <=> (3x - 6)(3x + 8) = 0
=> -8/3 \(\le\)x \(\le\)2
Vậy Max của A = 11 tại \(-\frac{8}{3}\le x\le2\)
Ta có: B = |2x - 5| - |2x - 11| + 3 > = |2x - 5 - 2x + 11| + 3 = |6| + 3 = 6 + 3 = 9
Dấu "=" xảy ra <=> (2x - 5)(2x - 11) = 0
=> \(\frac{5}{2}\le x\le\frac{11}{2}\)
Vậy Min của B = 9 tại \(\frac{5}{2}\le x\le\frac{11}{2}\)
a) (3x-24) = 2.74:73
=> 3x-24 = 2.7
=> 3x-16 = 14
=> 3x = 14+16
=> 3x = 30
=> x = 30:3
Vậy x = 10
b) x - [42 + (-28)] = -8
=> x - 14 = -8
=> x = -8 + 14
Vậy x = 6
c) l x-3 l = l 5 l + l -7 l
=> l x-3 l = 5+7
=> l x-3 l = 12
=> x-3 = 12 hay x-3 = -12
=> x = 12+3 hay x = -12+3
Vậy x = 15 hay x = -9
d) mình k biết
Câu 1 :
\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-3\right|=3\)
Dấu "=" xảy ra
TH1: \(\Leftrightarrow\hept{\begin{cases}3x-5>0\\2-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{3}\\x< \frac{2}{3}\end{cases}\Rightarrow}\frac{5}{3}< x< \frac{2}{3}\left(\text{loại}\right)}\)
TH2: \(\Leftrightarrow\hept{\begin{cases}3x-5< 0\\2-3x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{3}\\x>\frac{2}{3}\end{cases}\Rightarrow}\frac{2}{3}< x< \frac{5}{3}\left(\text{thỏa mãn}\right)}\)
Vậy Bmin = 3 <=> 2/3 < x < 5/3
Câu 2 :
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-23\right|=23\)
Dấu "=" xảy ra
TH1 : \(\Leftrightarrow\hept{\begin{cases}2x-20>0\\2x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>10\\x>\frac{-3}{2}\end{cases}}\Rightarrow x>10\)
TH2: \(\Leftrightarrow\hept{\begin{cases}2x-20< 0\\2x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 10\\x< \frac{-3}{2}\end{cases}\Rightarrow}}x< \frac{-3}{2}\)
Vậy Cmax = 23 <=> 2 t/h ( ko chắc )
\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-5+2\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3x-5\right)\left(2-3x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5\ge0\\2-3x\le0\end{cases}}\) hoặc \(\hept{\begin{cases}3x-5\le0\\2-3x\ge0\end{cases}}\)
Giải ra ta được: \(\Leftrightarrow\frac{2}{3}\le x\le\frac{5}{3}\)
Vậy Bmin = 3 khi và chỉ khi \(\frac{2}{3}\le x\le\frac{5}{3}\)
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-20-3\right|=23\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}2x-20\ge2x+3\ge0\\2x-20\le2x+3\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge10;x\ge\frac{-3}{2}\\x\le10;x\le\frac{-3}{2}\end{cases}}\)
Vậy Cmax = 17 khi và chỉ khi ....