Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+y^2-8x-y+68=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\)
\(minA=\dfrac{207}{4}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=x^2-8x+y^2-y+68\)
\(=x^2-8x+16+y^2-y+\dfrac{1}{4}+\dfrac{207}{4}\)
\(=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\forall x,y\)
Dấu '=' xảy ra khi x=4 và \(y=\dfrac{1}{2}\)
M = -x2 - 8x + 5
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Dấu "=" xảy ra <=> x = -4
Vậy MaxM = 21
\(M=-x^2-8x\)\(+5\)
\(=-x^2-8x-16+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=-\left(x+4\right)^2+21\)
Vì \(\left(x+4\right)^2\ge0\)
\(\Rightarrow-\left(x+4\right)^2\le0\)
\(\Rightarrow M=-\left(x+4\right)^2+21\le21\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\left(x+4\right)^2=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy GTLN của M = 21 khi x = - 4
P= - (x^2-8x+16+y^2-10y+25)-124
P=-[(x-4)^2+(y-5)^2]-124
-[(x-4)^2+(y-5)^2] nhỏ hơn hoặc bằng 0 => P nhỏ hơn hoặc bằng -124
=> GTLN của P=-124 khi x=4 và y=5