Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\)\(\left|x-1\right|+3x=1\)
\(\Leftrightarrow\)\(\left|x-1\right|=1-3x\)
+) Với \(x-1\ge0\)\(\Leftrightarrow\)\(x\ge1\) ta có :
\(x-1=1-3x\)
\(\Leftrightarrow\)\(x+3x=1+1\)
\(\Leftrightarrow\)\(4x=2\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\) ( không thỏa mãn )
+) Với \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\) ta có :
\(1-x=1-3x\)
\(\Leftrightarrow\)\(-x+3x=1-1\)
\(\Leftrightarrow\)\(2x=0\)
\(\Leftrightarrow\)\(x=0\) ( thỏa mãn )
Vậy \(x=0\)
Chúc bạn học tốt ~
\(2)\)\(B=\frac{3}{\left|x+5\right|+2018}\le\frac{3}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x+5\right|=0\)
\(\Leftrightarrow\)\(x=-5\)
Vậy GTLN của \(B\) là \(\frac{3}{2018}\) khi \(x=-5\)
Chúc bạn học tốt ~
\(A=\left|x+1\right|+\left|y-2\right|\)
\(A\ge\left|x+1+y-2\right|=\left|5+1-2\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+1\right)\left(y-2\right)\ge0\)
TH1 : \(\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}\Leftrightarrow}x+y\ge-1+2=1}\) ( thõa mãn giả thiết )
TH 2 : \(\hept{\begin{cases}x+1\le0\\y-2\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\y\le2\end{cases}\Leftrightarrow}x+y\le-1+2=1}\) ( loại )
Vậy GTNN của \(A\) là \(4\) khi \(x+y=5\) và \(\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)
Chúc bạn học tốt ~
Ta có A=\(|x+1|+|y-2|\ge|x+1+y-2|=|5-1|=4\)=4
(vì x+y=5)
Suy ra Amin= 4
Dấu "=" xảy ra <=> (x+1)(y-2)\(\ge0\)
\(\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1\le0\\y-2\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\\\hept{\begin{cases}x\le-1\\y\le2\end{cases}}\end{cases}}\)
phá đầu giá trị tuyệt đối ra, có công thức /a/ +/b/ > hoặc bằng a+b đấy chứng minh rồi áp dụng vào
a) A = 5-(x-2)2 \(\le\)5
<=> x-2 = 0
<=> x=2
b) B = -lx-2l-5 \(\le\)-5
<=> x-2 = 0
<=> x=2
c)C = 3-l2y-1l-lx-2l\(\le\)3
<=>\(\hept{\begin{cases}2y-1=0\\\text{x-2 = 0 }\end{cases}}\)
<=>\(\hept{\begin{cases}y=\frac{1}{2}\\x=2\end{cases}}\)
ta có:
\(|x+1|\ge0\Rightarrow|x+1|+5\ge5\)
=>\(Max\left(A\right)=5\Leftrightarrow x=-1\)