K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CT
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DK
1
28 tháng 9 2017
a,|x|=5
\(\Rightarrow x=\pm5\)
b,|x-2|=0
\(\Rightarrow x-2=0\)
x=0+2
x=2
10 tháng 3 2017
Ta có: D= \(|x-5|+|10-x|+15\)
,<=>D\(\le\).\(|x-5+10-x|+15\)
<=>D\(\le\)5+15
<=>D\(\le\)20
Vậy Min(D)=20 <=> x=10
10 tháng 3 2017
vẫn thế bạn ơi..., đổi |x-5| thành |5-x| rồi làm như trước
ND
0
MH
31 tháng 12 2015
A = | x + 5 | + 20
Ta có: | x + 5 | > 0
=> | x + 5 | + 20 > 20
=> GTNN của A là 20
<=> x + 5 = 0
<=> x = -5.
B = | x - 3 | - 10
Ta có: | x - 3 | > 0
=> | x - 3 | - 10 > -10
=> GTNN của B là -10
<=> x - 3 = 0
<=> x = 3.
Áp dụng BĐT /a+b/ \(\le\)/a/+/b/
Dấu "=" xảy ra <=> 0\(\le\)ab
Ta có: P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1
Vậy GTNN của P là 1 <=> 0\(\le\)(x-2016)(2017-x) <=> 2016 \(\le\)x\(\le\)2017
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/
Áp dụng BĐT /a+b/ ≤/a/+/b/
\(\Rightarrow\) P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1
Vậy GTNN của P là 1 <=> 0≤(x-2016)(2017-x) <=> 2016 ≤x≤2017