K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

chia đi, rồi tìm gtnn của thương, dễ mà

27 tháng 11 2016

Bạn có phân tích thành nhân tử được k, giải hộ mik với

 

20 tháng 10 2016

\(A=x^2+10y^2+2x-6xy-10y+25\)

=> \(A=x^2+2x\left(1-3y\right)+\left(1-3y\right)^2-\left(1-3y\right)^2-10y+25\)

=> \(A=\left(x+1-3y\right)^2-1+6y-9y^2-10y+25\)

=> \(A=\left(x+1-3y\right)^2-9y^2-4y+24\)

=> \(A=\left(x+1-3y\right)^2-\left(3y\right)^2-2.3y.\frac{2}{3}-\left(\frac{2}{3}\right)^2+\frac{220}{9}\)

=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\)

Có \(\left(x+1-3y\right)^2\ge0\)với mọi x, y

\(\left(3y+\frac{2}{3}\right)^2\ge0\)với mọi y

=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\ge\frac{220}{9}\)với mọi x, y

Dấu "=" xảy ra <=> \(\left(x+1-3y\right)^2=0\)<=> \(x+1-3y=0\)

và \(\left(3y+\frac{2}{3}\right)^2=0\)=> \(3y+\frac{2}{3}=0\)

=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)

20 tháng 10 2016

Bổ xung phần kết luận

KL: Amin = \(\frac{220}{9}\)<=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)

11 tháng 12 2016

A=(x-1)(x+2)(x+3)(x+6)+12

   =[ (x-1)(x+6) ][(x+2)(x+3)] +12

   =( x2+5x-6)( x2+5x+6) +12

    =(x^2+5x)2 - 62 +12

    =(x2+5x)2- 36+ 12

    =(x2+5x)2 - 24

nhận xét ta thấy (x2+5x)2 >=0

nên (x2+5x)2 -24 >= - 24

dấu bằng xảy ra khi và chỉ khi

x2+5x = 0

=> x(x+5) = 0

=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

vậy giá trị nhỏ nhất của A là -24 tại x=0 hoặc x= -5

11 tháng 12 2016

A=(x-1)(x+2)(x+3)(x+6) + 12

A=[(x-1)(x+6)][(x+2)(x+3)] + 12

A=(x2-x+6x-6)(x2+2x+3x+6) + 12

A=(x2+5x-6)(x2+5x+6) + 12

A= (x2+5x)2 - 62 + 12

A= (x2+5x)2 - 36 + 12

A=(x2+5x)2 - 24 \(\ge\)24

GTNN của A là -24 <=> (x2+5x)= 0 <=> x2+5x=0 <=> x(x+5)=0 <=> x=0 hoặc x=-5

14 tháng 12 2018

\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x+6\right)\left(x-1\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2.P_{min}\Leftrightarrow x^2+5xđạtGTNN\)

\(x^2+5x\ge0\Leftrightarrow x\left(x+5\right)\ge0\)

Dấu "=" xảy ra <=> \(x\in\left\{0;-5\right\}\)

Vậy: Pmin=-36 <=> x E {0;-5}

14 tháng 12 2018

CHờ tí mk lm câu b

16 tháng 10 2016

P = x2 + y2 - 2x + 6y + 12 = x2 + y2 - 2x + 6x + 1 + 9 + 2

=> P = (x2 - 2x + 1) + (y2 + 6y + 9) + 2

=> P = (x - 1)2 + (y + 3)2 + 2 \(\ge\)2

Đẳng thức xảy ra khi: (x - 1)2 = 0 và (y + 3)2 = 0  <=> x = 1 và y = -3

Vậy GTNN của P là 2 khi x = 1 và y = -3.

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

22 tháng 11 2017

ta có x^2 > hoặc = x

=> x^2 - x > hoặc = 0 

=> x^2 - x + 3/4 > hoặc = 3/4 

mà 3/4 >0 => x^2- x +3/4 >0