K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

bằng 91

17 tháng 3 2017

Từ biểu thức trên suy ra:

\(x^2-\left(\sqrt{y}-1\right)x+y-\sqrt{y}+1-P=0\)   \(\left(\cdot\right)\)

Coi phương trình  \(\left(\cdot\right)\)  là một phương trình bậc hai đối với ẩn  \(x\) . Như vậy, ta lập công thức del-ta như sau:

\(\Delta_x=\left(\sqrt{y}-1\right)^2-4\left(y-\sqrt{y}+1-P\right)\ge0\)

\(\Leftrightarrow\)  \(y-2\sqrt{y}+1-4y+4\sqrt{y}-4+4P\ge0\)

\(\Leftrightarrow\)  \(-3y+2\sqrt{y}-3+4P\ge0\)

\(\Leftrightarrow\)  \(4P\ge3y-2\sqrt{y}+3=3\left(y-2.\frac{1}{3}.\sqrt{y}+\frac{1}{9}+\frac{8}{9}\right)=3\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)  

Với mọi  \(x,y\in R\)thì ta luôn có    \(P\ge\frac{2}{3}\)  

Dấu  \("="\)  xảy ra khi và chỉ khi  \(y=\frac{1}{9}\)   nên dễ dàng suy ra được  \(x=-\frac{1}{3}\)

Kết luận:  .....

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

1 tháng 8 2020

a) \(ĐKXĐ:x>0\)

\(Y=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(\Leftrightarrow Y=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{\left(x-\sqrt{x}+1\right)}-1-2\sqrt{x}-1\)

\(\Leftrightarrow Y=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(x-\sqrt{x}+1\right)}-2\sqrt{x}-2\)

\(\Leftrightarrow Y=x+\sqrt{x}-2\sqrt{x}-2\)

\(\Leftrightarrow Y=x-\sqrt{x}-2\)

b) Ta có \(Y=x-\sqrt{x}-2=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Vậy \(Min_Y=-\frac{9}{4}\Leftrightarrow x=\frac{1}{4}\)

c) Để \(Y-\left|Y\right|=0\)

\(\Leftrightarrow Y=\left|Y\right|\)

\(\Leftrightarrow Y\ge0\)

\(\Leftrightarrow x-\sqrt{x}-2\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\ge0\)

\(\Leftrightarrow\sqrt{x}-2\ge0\) (Vì \(\sqrt{x}+1\ge0\))

\(\Leftrightarrow\sqrt{x}\ge2\)

\(\Leftrightarrow x\ge4\)  (ĐPCM)

2 tháng 8 2017

\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)

\(\Leftrightarrow2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)

\(=\left[\left(x^2-2x\sqrt{y}+y\right)+\frac{4}{3}.\left(x-\sqrt{y}\right)+\frac{4}{9}\right]+\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\left(y-\frac{2}{3}.\sqrt{y}+\frac{1}{9}\right)+\frac{4}{3}\)

\(=\left(x-\sqrt{y}+\frac{2}{3}\right)^2+\left(x+\frac{1}{3}\right)^2+\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)

\(\Rightarrow P\ge\frac{2}{3}\)

16 tháng 12 2016

Ta có: 

\(2x^2+xy+2y^2=x^2+y^2+\frac{3}{4}\left(x+y\right)^2+\frac{1}{4}\left(x-y\right)^2\)

\(\ge\frac{2\left(x+y\right)^2}{4}+\frac{3\left(x+y\right)^2}{4}=\frac{5\left(x+y\right)^2}{4}\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\). Tương tự ta có:

\(\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right);\sqrt{2z^2+xz+2x^2}\ge\frac{\sqrt{5}}{2}\left(x+z\right)\)

\(\Rightarrow M\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(x+z\right)\)

\(=\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

16 tháng 12 2016

Cho mình hối tại sao đẳng thức sảy ra x=y=z=1/3 vậy

26 tháng 9 2019

mình viết nhầm \(x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}+2\left(\sqrt{x}+\sqrt{y}\right)=0\)

25 tháng 7 2016

đẳng thức trái luôn luôn lớn hơn đẳng thức phải(nhờ bđt coossi) đấu = xảy ra <=> x=2 và y=-3

25 tháng 7 2016

bạn nhầm rồi @Ngọc Tuấn Lê

21 tháng 6 2018

\(1)\) Ta có : 

\(M=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

\(M=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(M=\left|x+1\right|+\left|x-1\right|\)

\(M=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(1-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1\end{cases}\Leftrightarrow}-1\le x\le1}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x+1\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge1\end{cases}}}\) ( loại ) 

Vậy GTNN của \(M\) là \(2\) khi \(-1\le x\le1\)

Chúc bạn học tốt ~ 

21 tháng 6 2018

b,ta co x^2+y^2=1

=>x^2=1-y^2

    y^2=1-x^2

ta co

\(\sqrt{x^4+4\left(1-x^2\right)}\)+\(\sqrt{y^4+4\left(1-y^2\right)}\)

=\(\sqrt{\left(x^2-2\right)^2}\)+\(\sqrt{\left(y^2-2\right)^2}\)

còn lại bạn xét các trường hợp của x^2-2 và y^2-2 là ra