Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
\(\Leftrightarrow\)\(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)
\(\Leftrightarrow\)\(2P=\left[\left(x^2-2x\sqrt{y}+y\right)+\frac{4}{3}\left(x-\sqrt{y}\right)+\frac{4}{9}\right]+\left(x^2+\frac{2x}{3}+\frac{1}{9}\right)+\left(y-\frac{2}{3}.\sqrt{y}+\frac{1}{9}\right)+\frac{4}{3}\)
\(\Leftrightarrow\)\(2P=\left(x-\sqrt{y}+\frac{2}{3}\right)+\left(x+\frac{1}{3}\right)^2+\left(y^2-\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)
\(\Leftrightarrow\)\(2P\ge\frac{4}{3}\)
\(\Rightarrow\)\(P\ge\frac{2}{3}\)
Vậy \(P_{min}=\frac{2}{3}\)
àk chỗ \(\left(x-\sqrt{y}+\frac{2}{3}\right)\) mình nhầm nhé phải là \(\left(x-\sqrt{y}+\frac{2}{3}\right)^2\)
hihi tại nhìu số quá nên nhìn nhầm sorry :'P
\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)
\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)
"=" khi x = y = 1/2
\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\Rightarrow\dfrac{y}{x}\ge4\)
\(P=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{1+\dfrac{y}{x}}\)
Đặt \(\dfrac{y}{x}=a\ge4\Rightarrow P=\dfrac{2a^2-2a+1}{a+1}=2a-4+\dfrac{5}{a+1}\)
\(P=\dfrac{a+1}{5}+\dfrac{5}{a+1}+\dfrac{9}{5}.a-\dfrac{21}{5}\ge2\sqrt{\dfrac{5\left(a+1\right)}{5\left(a+1\right)}}+\dfrac{9}{5}.4-\dfrac{21}{5}=5\)
Dấu "=" xảy ra khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
Nguyễn Việt Lâm Giáo viên làm thế nào để có thể nghĩ được ra như vậy?
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Điểm rơi: \(x=y=\frac{\sqrt{2}}{2}\)
Ta tách biểu thức được như sau: \(A=x+\frac{1}{x}+y+\frac{1}{y}=(x+\frac{1}{2x})+(y+\frac{1}{2y})+\frac{1}{2}(\frac{1}{2x}+\frac{1}{2y})\)
\(\geq 2\sqrt{x.\frac{1}{2x}}+2\sqrt{y.\frac{1}{2y}}+\frac{1}{2}.\frac{4}{x+y}=2\sqrt{2}+\frac{2}{x+y}\)
Áp dụng bất đẳng thức Bunhiacốpxki, ta lại có:
\((x+y)^2\leq 2(x^2+y^2)=2 \Rightarrow x+y\leq \sqrt{2}\)
\(\Rightarrow A\geq 3\sqrt{2}\)
Dấu bằng xảy ra khi \(x=y=\frac{\sqrt{2}}{2}\)
Lời giải:
$A=(x^2+2xy+y^2)+y^2-2\sqrt{2}(x+y)-2y+2022$
$=(x+y)^2-2\sqrt{2}(x+y)+2+(y^2-2y+1)+2019$
$=(x+y-\sqrt{2})^2+(y-1)^2+2019$
$\geq 2019$
Vậy $A_{\min}=2019$. Giá trị này đạt tại $x+y-\sqrt{2}=y-1=0$
$\Leftrightarrow y=1; x=\sqrt{2}-1$
\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
\(\Leftrightarrow2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)
\(=\left[\left(x^2-2x\sqrt{y}+y\right)+\frac{4}{3}.\left(x-\sqrt{y}\right)+\frac{4}{9}\right]+\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\left(y-\frac{2}{3}.\sqrt{y}+\frac{1}{9}\right)+\frac{4}{3}\)
\(=\left(x-\sqrt{y}+\frac{2}{3}\right)^2+\left(x+\frac{1}{3}\right)^2+\left(\sqrt{y}-\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)
\(\Rightarrow P\ge\frac{2}{3}\)