Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2a^2+2b^2+2ab-10a-8b+19\)
\(B=\left(a^2+2ab+b^2\right)+\left(a^2-10a+25\right)+\left(b^2-8b+16\right)-22\)
\(B=\left(a+b\right)^2+\left(a-5\right)^2+\left(b-4\right)^2-22\ge22\)
Vậy MIN B=22 <=> a=5 b=4
1, hiển nhiên a+b>0
có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3
\(A=x^2+y^2+z^2-yz-4x-3y+2027\)
\(\Rightarrow4A=4x^2+4y^2+4z^2-4yz-16x-12y+8108=4x^2-16x+16+3y^2+12y+12+y^2-4yz+4z^2+8080=4\left(x-2\right)^2+3\left(y+2\right)^2+\left(y-2z\right)^2+8080\)
Vì \(4\left(x-2\right)^2\ge0\)
\(3\left(y+2\right)^2\ge0\)
\(\left(y-2z\right)^2\ge0\)
\(\Rightarrow4A\ge8080\Rightarrow A\ge2020\)
\(ĐTXR\Leftrightarrow x=2,y=-2,z=-1\)
C=a2-4ab+4b2+b2-2b+1-7=(a-2b)2+(b-1)2-7 > hoặc =-7
dấu = xảy ra khi a-2b=0
b-1=0
<=>a=2;b=1
..................................
\(M=\left(a^2+2ab+b^2-6a-6b+9\right)+\left(b^2-2b+1\right)+2017\)
\(M=\left(a+b-3\right)^2+\left(b-1\right)^2+2017\ge2017\Rightarrow M_{min}=2017\)
ngonhuminh giảng cho minh cách ghep BP khi nhìn đa thức rất lùng tùng với,