Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
\(A=x^2+y^2+z^2-yz-4x-3y+2027\)
\(\Rightarrow4A=4x^2+4y^2+4z^2-4yz-16x-12y+8108\)
\(=\left(4x^2-16x+16\right)+\left(3y^2-12y+12\right)+\left(y^2-4yz+4z^2\right)+8080\)
\(=4.\left(x^2-4x+4\right)+3.\left(y^2-4y+4\right)+\left(y-2z\right)^2+8080\)
\(=4.\left(x-2\right)^2+3.\left(y-2\right)^2+\left(y-2z\right)^2+8080\)
Mà: \(\hept{\begin{cases}4.\left(x-2\right)^2\ge0\\3.\left(y-2\right)^2\ge0\\\left(y-2z\right)^2\ge0\end{cases}}\)
\(\Rightarrow4.\left(x-2\right)^2+3.\left(y-2\right)^2+\left(y-2z\right)^2\ge0\)
\(\Rightarrow4.\left(x-2\right)^2+3.\left(y-2\right)^2+\left(y-2z\right)^2+8080\ge8080\)
\(\Rightarrow A\ge8080\)
Dấu '' = '' xảy ra khi:
\(\hept{\begin{cases}4.\left(x-2\right)^2=0\\3.\left(y-2\right)^2=0\\\left(y-2z\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=2\\z=1\end{cases}}\)
Vậy giá trị nhỏ nhất của \(A=2020\) khi \(\hept{\begin{cases}x=y=2\\z=1\end{cases}}\)
Lời giải:
a)
$A=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 10$
Vậy $A_{\min}=10$. Giá trị này đạt tại $(2x+1)^2=0$
$\Leftrightarrow x=-\frac{1}{2}$
b)
$C=x^2-2x+y^2-4y+7=(x^2-2x+1)+(y^2-4y+4)+2$
$=(x-1)^2+(y-2)^2+2\geq 2$
Vậy $C_{\min}=2$. Giá trị này đạt tại $(x-1)^2=(y-2)^2=0$
$\Leftrightarrow x=1; y=2$
`A=x^2-4x+y^2-8y+6`
`A=x^2-4x+4+y^2-8y+16-14`
`A=(x-2)^2+(y-4)^2-14`
VÌ `(x-2)^2+(y-4)^2>=0`
`=>(x-2)^2+(y-4)^2-14>=-14`
`=>A>=-14`
Dấu "=" xảy ra khi `x-2=0,y-4=0<=>{(x=2),(y=4):}`
\(A=x^2+y^2+z^2-yz-4x-3y+2027\)
\(\Rightarrow4A=4x^2+4y^2+4z^2-4yz-16x-12y+8108=4x^2-16x+16+3y^2+12y+12+y^2-4yz+4z^2+8080=4\left(x-2\right)^2+3\left(y+2\right)^2+\left(y-2z\right)^2+8080\)
Vì \(4\left(x-2\right)^2\ge0\)
\(3\left(y+2\right)^2\ge0\)
\(\left(y-2z\right)^2\ge0\)
\(\Rightarrow4A\ge8080\Rightarrow A\ge2020\)
\(ĐTXR\Leftrightarrow x=2,y=-2,z=-1\)