Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu B: vì /3.x+1/ lớn hơn hoặc bằng 0
suy ra /3.x+1/ +1/4 lớn hơn hoặc bằng 0+1/4
suy ra B lớn hơn hoặc bằng 1/4
vậy Bmin là 1/4
câu C vì / 5-3.x / lớn hơn hoặc bằng 0
suy ra /5-3.x/ +1 lớn hơn hoặc bằng 0+1
suy ra C lớn hơn hoặc bằng 1
Vậy Cmin là 1
câu D vì /4+1/2.x/ lớn hơn hoặc bằng 0
suy ra /4+1/2.x/ +7 lớn hơn hoặc bằng 0+7
suy ra D lớn hơn hoặc bằng 7
vậy Dmin là 7
a)\(A=12-\left|x-3\right|-\left|y+7\right|\)
\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)
\(\Rightarrow A\le12-0-0=12\)
Vậy Max A = 12 <=> x = 3 ; y = -7
b)\(B=-\left(x-2018\right)^6-1\)
\(-\left(x-2018\right)^6\le0\)
\(B\le0-1=-1\)
Vậy Max B = -1 <=> x = 2018
a) \(A=12-\left|x-3\right|-\left|y+7\right|\)
Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)
suy ra: \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)
Vậy MIN A = 12
Dấu "=" xảy ra <=> \(x=3;y=-7\)
b) \(B=-\left(x-2018\right)^6-1\)
Nhận thấy: \(\left(x-2018\right)^6\ge0\)
suy ra: \(B=-\left(x-2018\right)^2-1\le-1\)
Vậy MIN B = -1
Dấu "=" xảy ra <=> \(x=2018\)
c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)
Nhận thấy: \(\left|x+8\right|\ge0\) \(\left(3y+7\right)^{2016}\ge0\)
suy ra: \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)
Vậy MIN C = 20/7
Dấu "=" xảy ra <=> \(x=-8;y=-\frac{7}{3}\)
B=(|x+3|+6)^2-7
Có |x+3|>/0=>|x+3|+6>/0+6=6
=>(|x+3|+6)^2>/6^2=36
=>B=(|x+3|+6)^2-7>/36-7=29
Vậy min B=29<=>x=0
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
a) \(\left|x+5\right|\ge0\forall x\)
GTNN của biểu thức =0 khi x=-5
b) \(\left|x-2\right|-3\)
vì \(\left|x-2\right|\ge0\forall x\)nên \(\Rightarrow\left|x-2\right|-3\ge-3\forall x\)
GTNN của biểu thức =-3 khi x=2
c) \(\frac{3}{7}+\left|2x-7\right|\ge\frac{3}{7}\forall x\)
GTNN của biểu thức = 3/7 khi x=7/2