Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x+5\right|\ge0\forall x\)
GTNN của biểu thức =0 khi x=-5
b) \(\left|x-2\right|-3\)
vì \(\left|x-2\right|\ge0\forall x\)nên \(\Rightarrow\left|x-2\right|-3\ge-3\forall x\)
GTNN của biểu thức =-3 khi x=2
c) \(\frac{3}{7}+\left|2x-7\right|\ge\frac{3}{7}\forall x\)
GTNN của biểu thức = 3/7 khi x=7/2
\(A=\left|x-1\right|+2018\)
ta có :
\(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)
\(\Rightarrow\left|x-1\right|+2018\ge2018\)
dấu "=" xảy ra khi :
\(\left|x-1\right|=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
vậy MinA = 2018 khi x = 1
Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi
các bạn thông cảm mình ko biết viết dấu giá trị tuyệt đối ở trong này
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
B=(|x+3|+6)^2-7
Có |x+3|>/0=>|x+3|+6>/0+6=6
=>(|x+3|+6)^2>/6^2=36
=>B=(|x+3|+6)^2-7>/36-7=29
Vậy min B=29<=>x=0
29 chac chan 100%