K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

\(C=x^2-2xy+y^2+4y^2+4y+1+2=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu "=" xảy ra khi\(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=\frac{-1}{2}\end{cases}\Leftrightarrow}x=y=\frac{-1}{2}}\)

=x2-2xy+y2+4y2+4y+1+2

=(x-y)2+(2y+1)2+2\(\ge2\)

dấu bằng xảy ra khi x=y=-1/2

28 tháng 6 2016

a)Ta có: \(A=x^2+5y^2-2xy+4y+3\)\(\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

                    = \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

(Do \(\left(x-y\right)^2\ge0;\left(2y+1\right)^2\ge0\))

Vậy min A=2. Dấu = khi x=y=-1/2

b) Đặt \(t=x^2-2x+1\)

=> \(B=\left(t-1\right)\left(t+1\right)\)=\(t^2-1\)=\(t^2+\left(-1\right)\ge-1\)

Do \(t^2\ge0\)

Vậy min B=-1. Dấu = khi t=0 hay \(x^2-2x+1=0\)

                                          => \(\left(x-1\right)^2=0\)<=> x=1

28 tháng 6 2016

trời ơi ghi cả 1 dãy 

oho

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

 

c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu '=' xảy ra khi x(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

d) Ta có: \(x^2+5y^2-2xy+4y+3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)

31 tháng 7 2018

\(C=x^2+5y^2-2xy+4y+3\)

\(=x^2+4y^2+y^2-2xy+4y+2+1\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)

Ta có: \(\left(x-y\right)^2\ge0\) ; \(\left(2y+1\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\)

\(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Vậy GTNN của C là 2

Dấu \("="\) xảy ra khi :

\(2y+1=0\Rightarrow2y=0-1=-1\Rightarrow y=\dfrac{-1}{2}\)

hoặc \(x-y=0\)\(\Rightarrow x=y=-\dfrac{1}{2}\)

25 tháng 12 2020

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

3 tháng 7 2021

\(a,A=x^2-2x+2=\left(x-1\right)^2+1\ge1\)

dấu"=" xảy ra<=>x=1

\(b,B=2x^2-5x+2=2\left(x^2-\dfrac{5}{2}x+1\right)=2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{9}{16}\right)\)

\(=2\left[\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{16}\right]=2\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

dấu"=" xảy ra<=>x=5/4

c,\(C=x^2+2xy+4y^2+3=\left(x+y\right)^2+3\left(y^2+1\right)\ge3\)

dấu"=" xảy ra<=>x=y=0

d,\(D=\left|x-1\right|+|2x-1|=|1-x|+|2x-1|\ge|1-x+2x-1|\)

\(=|x|\ge0\)

dấu"=" xảy ra<=>\(x=0\)