K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

\(~~~~~~~HD~~~~~~~\)

\(Tacó\)

\(\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)

\(\Rightarrow C\ge-1\Rightarrow C_{min}=-1\)

Dấu "=" xảy ra khi:

\(2x+\frac{1}{3}=0\Leftrightarrow2x=-\frac{1}{3}\Leftrightarrow x=-\frac{1}{6}\)

Vậy GTNN của C là: -1 khi: x=-1/6

21 tháng 1 2019

\(C=\left(2x+\frac{1}{3}\right)^4-1\)

\(\text{Vì }\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)

\(\Rightarrow C=\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

Dấu '' = '' xảy ra khi :

\(\left(2x+\frac{1}{3}\right)^4=0\)

\(\Rightarrow2x+\frac{1}{3}=0\)

\(\Rightarrow2x=-\frac{1}{3}\)

\(\Rightarrow x=-\frac{1}{6}\)

Vậy Min= -1 <=> x = - 1/6

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

5 tháng 6 2016

Đáy lớn là

26 + 8 = 34 M

chIỀU CAO là

26 - 6 = 20 m

Diện tích thửa ruộng là

{ 34 + 26 } x 20 : 2 = 800 m2

Đáp số 800 m2

5 tháng 6 2016

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

15 tháng 3 2017

\(C=\frac{2\left(x-1\right)^2+1}{x^2-2x+3}=\frac{2\left(x-1\right)^2+1}{\left(x^2-2x+1\right)+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=\frac{2\left[\left(x-1\right)^2+2\right]-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

Để \(2-\frac{3}{\left(x-1\right)^2+2}\) đạt GTNN <=> \(\left(x-1\right)^2+2\)đạt GTNN 

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\) có GTNN là 2 tại x = 1

\(\Rightarrow B_{min}=2-\frac{3}{\left(1-1\right)^2+2}=\frac{1}{2}\) tại \(x=1\)

28 tháng 8 2021

1) \(A=x^2+4\ge4\)

\(ĐTXR\Leftrightarrow x=0\)

2) \(B=2x^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\)

\(ĐTXR\Leftrightarrow x=0\)

3) \(\left(2x-3\right)^2-5\ge-5\)

\(ĐTXR\Leftrightarrow x=\dfrac{3}{2}\)