K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

Q = x 2 + 2 y 2 + 2 x y − 2 x − 6 y + 2015        = x 2 + 2 x y + y 2 − 2 x − 2 y + 1 + y 2 − 4 y + 4 + 2010        = x 2 + 2 x y + y 2 − 2 x + 2 y + 1 + y 2 − 4 y + 4 + 2010        = x + y 2 − 2 x + y + 1 + y 2 − 4 y + 4 + 2010        = x + y − 1 2 + y − 2 2 + 2010

4 tháng 7 2019

Do x+y=1 nên x, y không đồng thời bằng 0 

+) Nếu \(x=0\)\(\Rightarrow\)\(y=1\)\(\Rightarrow\)\(A=0^3+1^3+0^2+1^2+2015=2017\)

Tương tự với y = 0 

+) Nếu x, y khác 0, ta có : \(A=x^3+y^3+x^2+y^2+2015=\frac{x^4}{x}+\frac{y^4}{y}+x^2+y^2+2015\)

\(\ge\frac{\left(x^2+y^2\right)^2}{x+y}+x^2+y^2+2015\ge\frac{\frac{\left(x+y\right)^4}{4}}{x+y}+\frac{\left(x+y\right)^2}{2}+2015=\frac{3}{4}+2015\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

Do \(\frac{3}{4}+2015< 2017\) nên GTNN của \(A=\frac{3}{4}+2015\) khi \(x=y=\frac{1}{2}\)

1 tháng 5 2019

Ta có : (x+y)2+7x+7y+y2+6=0

( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0

( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)

\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)

\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)

\(\Rightarrow\)...... 

1 tháng 5 2019

lon so roi,

thay -5/4 thành -5/2 ; 5/4 thành 5/2

-15/4 thành -5 ; 5/2 thành 0 

28 tháng 12 2015

2/1.2+2/2.3+2/3.4+...+2/x(x+1)=4028/2015

2(1/1.2+1/2.3+1/3.4+...+1/x(x+1))=4028/2015

2(1/1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/x+1)=4028/2015

2(1-1/x+1)=4028/2015

1-1/x+1=2014/2015

(x+1-1)/x+1=2014/2015

x/x+1=2014/2015

(x+1).2014=2015x

2014x-2015x=-2014

-x=-2014

x=2014

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

30 tháng 10 2020

Bài 1.

[ 4( x - y )5 + 2( x - y )3 - 3( x - y )2 ] : ( y - x )2 < sửa một lũy thừa rồi nhé >

= [ 4( x - y )5 + 2( x - y )3 - 3( x - y )3 ] : ( x - y )2

Đặt t = x - y

bthuc ⇔ ( 4t5 + 2t3 - 3t2 ) : t2

           = 4t5 : t2 + 2t3 : t2 - 3t2 : t2

           = 4t3 + 2t - 3

           = 4( x - y )3 + 2( x - y ) - 3

Bài 2.

5x( x - 2 ) + 3x - 6 = 0

⇔ 5x( x - 2 ) + 3( x - 2 ) = 0

⇔ ( x - 2 )( 5x + 3 ) = 0

⇔ x - 2 = 0 hoặc 5x + 3 = 0

⇔ x = 2 hoăc x = -3/5

Bài 3.

A = x2 - 6x + 2023

= ( x2 - 6x + 9 ) + 2014

= ( x - 3 )2 + 2014 ≥ 2014 ∀ x

Dấu "=" xảy ra khi x = 3

=> MinA = 2014 <=> x = 3

Bài 4.

B = ( 3x + 5 )2 + ( 3x - 5 )2 - 2( 3x + 5 )( 3x - 5 )

= [ ( 3x + 5 ) - ( 3x - 5 ) ]2

= ( 3x + 5 - 3x + 5 )2

= 102 = 100

Vậy B không phụ thuộc vào x ( đpcm )

Bài 6.

C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152

= ( 20152 - 20142 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 1

= ( 2015 - 2014 )( 2015 + 2014 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1

= 4029 + ... + 9 + 5 + 1

\(\frac{\left(4029+1\right)\left[\left(4029-1\right)\div4+1\right]}{2}\)

= 2 031 120

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)