K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

Ta có : (x+y)2+7x+7y+y2+6=0

( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0

( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)

\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)

\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)

\(\Rightarrow\)...... 

1 tháng 5 2019

lon so roi,

thay -5/4 thành -5/2 ; 5/4 thành 5/2

-15/4 thành -5 ; 5/2 thành 0 

8 tháng 5 2016

A = x +y +1 => A - 1 = x +y.

Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0

=> (A +1)(A +4) <= 0 => - 1 <= A <= -4

A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1

A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4

Vậy minA = -1 khi x = -1, y = 0

maxA = -4 khi x = -4, y = 0

Ta có : \(7x^2+8xy+7y^2=10\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+6\left(x^2+y^2\right)=10\)

\(\Rightarrow6\left(x^2+y^2\right)=10-\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2=\frac{10-\left(x+y\right)^2}{6}=\frac{5}{3}-\frac{\left(x+y\right)^2}{6}\)

​Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\Rightarrow\frac{\left(x+y\right)^2}{6}\ge0\)

\(\Rightarrow x^2+y^2\le\frac{5}{3}\)

Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+y\right)^2=0\)

\(\Leftrightarrow x+y=0\)

\(\Leftrightarrow x=-y\)

\(\Leftrightarrow7x^2-8x^2+7x^2=10\)

\(\Leftrightarrow6x^2=10\)

\(\Leftrightarrow x^2=\frac{5}{3}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{3}\end{cases}}\)

hoặc \(\hept{\begin{cases}x=-\frac{5}{3}\\y=\frac{5}{3}\end{cases}}\)

Ta dễ dàng chứng minh được : \(2xy\le x^2+y^2\forall x,y\)

\(\Rightarrow8xy\le4\left(x^2+y^2\right)\)

Ta có :\(7x^2+8xy+7y^2=7\left(x^2+y^2\right)+8xy=10\)

\(\Rightarrow7\left(x^2+y^2\right)=10-8xy\ge10-4\left(x^2+y^2\right)\)

\(\Rightarrow11\left(x^2+y^2\right)\ge10\)

\(\Rightarrow x^2+y^2\ge\frac{10}{11}\)

Dấu \("="\)xảy ra \(\Leftrightarrow x=y\)

\(\Leftrightarrow7x^2+8x^2+7x^2=10\)

\(\Leftrightarrow22x^2=10\)

\(\Leftrightarrow x^2=\frac{5}{11}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=\sqrt{\frac{5}{11}}\\x=y=-\sqrt{\frac{5}{11}}\end{cases}}\)

Vậy ...

A>=1/(1+xy)=1/2

Dấu = xảy ra khi x=y=1

6 tháng 1 2021

\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)

6 tháng 1 2021

dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho

5 tháng 12 2018

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

29 tháng 1 2019

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.-