Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất : lx| = |-x|
|x|+|y|\(\ge\)|x+y|
ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4
vậy giá trị nhỏ nhất là 4
dấu = xảy ra khi tất cả cùng dấu
cậu nên mua quyển sách mình nói nêu là dân chuyên toán
Với giá trị nào của x; y thì biểu thức: A=lx- yl+l x+ 1l+ 2016 đạt giá trị nhỏ nhất. Tìm giá trị đó!
Vì |x-y|\(\ge\)0 với mọi x,y
|x+1|\(\ge\)0 Với mọi x
\(\Rightarrow\)|x-y|+|x+1|\(\ge\)0 Với mọi x,y
\(\Rightarrow\)|x-y|+|x+1|+2016\(\ge\)2016 với mọi x,y
\(\Rightarrow\)A\(\ge\)2016 với mọi x,y
Dấu '=' xảy ra\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x=0-1=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}-1-y=0\\x=-1\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}y=-1-0=-1\\x=-1\end{cases}}\)
Vậy Min A=2016\(\Leftrightarrow\)x=-1,y=-1
2450 nhé
còn cái nịtッ