K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

bạn xem lại đề đi, sao lại có 5x^2+10x^2 , sao không viết thành 15x^2 luôn chứ

29 tháng 7 2016

 D= x^2+2*(1/2)xy+((1/2)y)^2+(3/4)y^2+1 
=(x+(1/2)y)^2 +1 
Nên min D=1 
E=(2x-1)^2+(y-1)^2+(x-3y)^2+1 

nên min E=1

27 tháng 7 2016

B=[(x - 2)(x - 5)](x2– 7x - 10) 
= (x2- 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2- 102
= (x2 - 7x)2 - 100

=>(x2-7x)2\(\ge\) 100

GTNN = -100 \(\Rightarrow\) x2 - 7x = 0 \(\Leftrightarrow\) x(x-7) = 0 \(\Leftrightarrow\) x = 0 hoặc x = 7

27 tháng 7 2016

B = x2 - 4xy + 5y2 + 10x - 22y + 28 
= x2 - 4xy + 4y2+ y2+ 10(x-2y) + 28 
= (x - 2y)2+ 10(x-2y) + 25 + y2- 2y+ 1 + 2 
= (x-2y + 5)2 + (y-1)2 + 2\(\ge\) 2 
GTNN B = 2, khi y=1, x=-3

4 tháng 9 2017

ta có \(2B=2x^2-4xy+4y^2+10x\) 

                \(=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)-25\)

                 \(=\left(x-2y\right)^2+\left(x+5\right)^2-25\)

vì \(\left(x-2y\right)^2>=0;\left(x+5\right)^2>=0\)

=>\(2B>=-25=>b>=-\frac{25}{2}\)

dấu = xảy ra <=> \(\hept{\begin{cases}x=-5\\y=-10\end{cases}}\)

b)   ta có 

\(Q=x^2-6xy+9y^2+x^2-x+\frac{1}{4}+\frac{3}{4}\)

     \(=\left(x-3y\right)^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> Q>=3/4

dấu = xảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

20 tháng 12 2020

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2x+1\right)+8\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+8>0\forall x;y\)  (do \(\left(x-3y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(y-1\right)^2\ge0\forall x;y\)

28 tháng 12 2016

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

27 tháng 12 2016

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam