Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+10y^2-6xy-6x-2y+16\)
\(\Leftrightarrow A=\left(x^2-6xy+9y^2\right)+\left(x^2-6x+9\right)+\left(y^2-2y+1\right)+6\)\(\Leftrightarrow A=\left(x-3y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2+6\)
Do \(\left\{{}\begin{matrix}\left(x-3y\right)^2\ge0\forall x;y\\\left(x-3\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow A=\left(x-3y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2+6\ge6\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x-3=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\x=3\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy Min A là : \(6\Leftrightarrow x=3;y=1\)
bạn xem lại đề đi, sao lại có 5x^2+10x^2 , sao không viết thành 15x^2 luôn chứ
\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)
\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)
vì \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)
dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
vậy gtnn của bt là 2016 khi x=3;y=4
đề này của sở giáo dục và đào tạo tỉnh hà nam
\(A=2x^2+9y^2-6xy-6x-12y+2046\)
\(=\left[\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4\right]-4+\left(x^2-10x+25\right)-25+2046\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x-5\right)^2-4-25+2046\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2017\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy \(A_{min}=2017\) tại \(x=5;y=\frac{7}{3}\)
\(A=x^2+10y^2+2x-6xy-10y+25\)
=> \(A=x^2+2x\left(1-3y\right)+\left(1-3y\right)^2-\left(1-3y\right)^2-10y+25\)
=> \(A=\left(x+1-3y\right)^2-1+6y-9y^2-10y+25\)
=> \(A=\left(x+1-3y\right)^2-9y^2-4y+24\)
=> \(A=\left(x+1-3y\right)^2-\left(3y\right)^2-2.3y.\frac{2}{3}-\left(\frac{2}{3}\right)^2+\frac{220}{9}\)
=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\)
Có \(\left(x+1-3y\right)^2\ge0\)với mọi x, y
\(\left(3y+\frac{2}{3}\right)^2\ge0\)với mọi y
=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\ge\frac{220}{9}\)với mọi x, y
Dấu "=" xảy ra <=> \(\left(x+1-3y\right)^2=0\)<=> \(x+1-3y=0\)
và \(\left(3y+\frac{2}{3}\right)^2=0\)=> \(3y+\frac{2}{3}=0\)
=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)
Bổ xung phần kết luận
KL: Amin = \(\frac{220}{9}\)<=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)