K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A\ge2\cdot3=6\)

Dấu '=' xảy ra khi x=1

15 tháng 5 2022

mjk cx đag tìm bài này, giải giúp mình với

 

27 tháng 2 2022

m.n ơi giúp mk 1 hoặc 2 câu đc ko ạ mk cần gấp lắm mà mk ko bt cách lm

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM ta có:

$x+\frac{4}{x}\geq 4$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{8}{x}+\frac{32}{y}\geq \frac{(\sqrt{8}+\sqrt{32})^2}{x+y}=\frac{72}{x+y}\geq \frac{72}{6}=12$

Cộng theo vế 2 BĐT trên thì:

$P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(x,y)=(2,4)$

18 tháng 4 2021

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

1 tháng 2 2021

Có : \(P=4x+\dfrac{16}{x^2}=2x+2x+\dfrac{16}{x^2}\)

- AD AMGM : \(2x+2x+\dfrac{16}{x^2}\ge3\sqrt[3]{\dfrac{2x.2x.16}{x^2}}=12\)

- Dấu " = " xảy ra \(\Leftrightarrow2x=\dfrac{16}{x^2}\)

\(\Leftrightarrow2x^3=16\)

\(\Leftrightarrow x=2\) ( TM )

Vậy ....

( Chắc đề như vầy :vvv )

1 tháng 2 2021

Dùng cái này đánh công thức nha bạn

27 tháng 1 2021

Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):

\(A=x\sqrt{y+1}+y\sqrt{x+1}\)

\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)

\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)

\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)

\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)

\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)