K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2021

Có : \(P=4x+\dfrac{16}{x^2}=2x+2x+\dfrac{16}{x^2}\)

- AD AMGM : \(2x+2x+\dfrac{16}{x^2}\ge3\sqrt[3]{\dfrac{2x.2x.16}{x^2}}=12\)

- Dấu " = " xảy ra \(\Leftrightarrow2x=\dfrac{16}{x^2}\)

\(\Leftrightarrow2x^3=16\)

\(\Leftrightarrow x=2\) ( TM )

Vậy ....

( Chắc đề như vầy :vvv )

1 tháng 2 2021

Dùng cái này đánh công thức nha bạn

27 tháng 2 2022

m.n ơi giúp mk 1 hoặc 2 câu đc ko ạ mk cần gấp lắm mà mk ko bt cách lm

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM ta có:

$x+\frac{4}{x}\geq 4$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{8}{x}+\frac{32}{y}\geq \frac{(\sqrt{8}+\sqrt{32})^2}{x+y}=\frac{72}{x+y}\geq \frac{72}{6}=12$

Cộng theo vế 2 BĐT trên thì:

$P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(x,y)=(2,4)$

24 tháng 4 2019

M=4x2-3x+\(\frac{x}{4}\)+2017=16x2-12x+x+8068=16x2-11x+8068

Phân tích M ra đc:M=[(4x)2-2.4x.\(\frac{11}{8}\)+\(\frac{121}{64}\)]-\(\frac{121}{64}\)+8068

=(4x-\(\frac{11}{8}\))2+\(\frac{516231}{64}\)

Như vậy MinM \(\frac{516231}{64}\)nhé!

\(A\ge2\cdot3=6\)

Dấu '=' xảy ra khi x=1

15 tháng 5 2022

mjk cx đag tìm bài này, giải giúp mình với

 

10 tháng 7 2021

Tội cho bn zạ, hỏi bao câu mà chả có ai trả lời à

NV
21 tháng 4 2021

\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)

\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)

NV
3 tháng 1 2022

ĐKXĐ: \(x\ge0\)

- Với \(x=0\) không phải nghiệm

- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:

\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)

Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)

Pt trở thành: \(t^2+2t+3-2m=0\)

\(\Leftrightarrow t^2+2t+3=2m\) (1)

Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)

Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)

Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)

\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)

\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)

3 tháng 1 2022

Em cảm ơn thầy ạ.