K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

\(A=a^4-2a^3+2a^2-2a+2\)

\(A=a^2\left(a-1\right)^2+\left(a-1\right)^2+1\)

\(a^2\left(a-1\right)^2\ge0\)\(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2\left(a-1\right)^2+\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2\left(a-1\right)^2+\left(a-1\right)^2+1\ge1\)

\(\Rightarrow Min_A=1\) khi \(a-1=0\Rightarrow a=1\)

27 tháng 11 2018

chuẩn cmnr

24 tháng 11 2019

b) \(A=2x^2-x+2017\)

\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1}{2\sqrt{2}}+\frac{1}{8}+\frac{16135}{8}\)

\(=\left(\sqrt{2}x-\frac{1}{2\sqrt{2}}\right)^2+\frac{16135}{8}\ge\frac{16135}{8}\)

Vậy \(A_{min}=\frac{16135}{8}\Leftrightarrow\sqrt{2}x-\frac{1}{2\sqrt{2}}=0\Leftrightarrow x=\frac{1}{4}\)

26 tháng 11 2019

a) \(A=a^4-2a^3+2a^2-2a+2\)

\(=\left(a^4-2a^3+a^2\right)+\left(a^2-2a+1\right)+1\)

\(=\left(a^2-a\right)^2+\left(a-1\right)^2+1\ge1.\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow}a=1\)

Vậy min A = 1 đạt tại a =1/

1 tháng 11 2019

We have:\(A=\left(a-1\right)^2\left(a^2+1\right)+1\ge1\)

Equality holds when a = 1.

Done!

26 tháng 11 2019

Câu hỏi của Soái muội - Toán lớp 8 - Học toán với OnlineMath

NV
22 tháng 2 2021

\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

\(A_{min}=3\) khi \(a=1\)

22 tháng 2 2021

https://hoc24.vn/cau-hoi/co-the-dung-mot-can-dia-co-hai-dia-can-voi-nam-qua-cancac-qua-can-chi-de-o-mot-dia-can-de-can-tat-ca-cac-vat-co-khoi-luong-la-mot-so-tu-nhien-tu-1kg-den-30kg-duoc-khongcac-ban-giai-giup-mk-voi.341565384997

Thầy giải giúp e với ạ,e cảm ơn thầy ạ! <3

10 tháng 4 2021

undefined

24 tháng 12 2021

A=a4−2a3+a2+a2−2a+1+1A=a4−2a3+a2+a2−2a+1+1

=a2(a2−2a+1)+a2−2a+1+1=a2(a2−2a+1)+a2−2a+1+1

=(a2+1)(a2−2a+1)+1=(a2+1)(a2−2a+1)+1

=(a2+1)(a−1)2+1≥1=(a2+1)(a−1)2+1≥1

Amin=1Amin=1 khi a=1

20 tháng 3 2020

\(A=a^4-2a^3+3a^2-4a+5\)

\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)

Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)

Vậy Min A=3 đạt được khi a=1

Nguồn: DORAEMON (lazi.vn)

22 tháng 3 2020

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo.