K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2017

Lời giải:

a)

Ta có \(x(x+1)+5=x^2+x+5=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\)

\(\left(x+\frac{1}{2}\right)^2\geq 0\forall x\in\mathbb{R}\Rightarrow x(x+1)+5\geq 0+\frac{19}{4}=\frac{19}{4}\)

Do đó \((x^2+x+5)_{\min}=\frac{19}{4}\Leftrightarrow x=\frac{-1}{2}\)

b)

\(M=a^2+ab+b^2-3a-3b+2013\)

\(\Rightarrow 2M=2a^2+2ab+2b^2-6a-6b+4026\)

\(\Leftrightarrow 2M=(a+b-2)^2+(a-1)^2+(b-1)^2+4020\)

Thấy \(\left\{\begin{matrix} (a+b-2)^2\geq 0\\ (a-1)^2\geq 0\\ (b-1)^2\geq 0\end{matrix}\right.\Rightarrow 2M\geq 4020\Rightarrow M\geq 2010\)

Vậy \(M_{\min}=2010\Leftrightarrow a=b=1\)

12 tháng 8 2017

thank you

8 tháng 1 2017

\(\left(a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3}{2}b\right)+\frac{3}{4}\left(b^2-2b+1\right)-\frac{9}{4}-\frac{3}{4}+2013\\ \)

\(\left(a+\frac{b-3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2013-3\)

GTNN=2010

Khi b=1 và a= 1

29 tháng 10 2018

Hóa ra OLM vẫn còn ADMIN

21 tháng 10 2016

Với các bài toán tìm max, min 2 biến kiểu như thế này, em hay cố gắng nhân M lên n lần để tạo thêm được các số hạng, sang đó ghép tạo thành các bình phương.

Cách làm như sau:

\(4M=4a^2+4ab+4b^2-12a-12b+8004\)

\(=\left(4a^2+4ab+b^2\right)-6\left(2a+b\right)+3\left(b^2-2b\right)+8004\)

\(=\left(2a+b\right)^2-6\left(2a+b\right)+9+3\left(b^2-2b+1\right)+7992\)

\(=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7992\ge7992\)

Vậy 4M min = 7992, vây M min = 1998.

Vậy min M = 1998 khi \(\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Lời giải:

Ta có:
\(4M=4a^2+4ab+4b^2-12a-12b+8052\)

\(=(4a^2+4ab+b^2)+3b^2-12a-12b+8052\)

\(=(2a+b)^2-6(2a+b)+9+3b^2-6b+8043\)

\(=[(2a+b)^2-6(2a+b)+9]+3(b^2-2b+1)+8040\)

\(=(2a+b-3)^2+3(b-1)^2+8040\)

\(\geq 0+3.0+8040=8040\)

\(\Rightarrow M\geq \frac{8040}{4}=2010\)

Vậy \(M_{\min}=2010\Leftrightarrow \left\{\begin{matrix} 2a+b-3=0\\ b-1=0\end{matrix}\right. \Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\)

1 tháng 7 2019

\(A=\left(a+2b-5+b\right)^2-2ab+34=\left(a+2b-5\right)^2+2b\left(a+2b-5\right)+b^2-2ab+34\)

\(A=\left(a+2b-5\right)^2+5b^2-10b+5+29\)

\(A=\left(a+2b-5\right)^2+5\left(b-1\right)^2+29\ge29\)

\(A_{min}=29\) khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)

\(B=x+\frac{25}{x}-8\ge2\sqrt{x.\frac{25}{x}}-8=2\)

\(B_{min}=2\) khi \(x=5\)

\(C=\frac{x^2-15x+36}{x}=x+\frac{36}{x}-15\ge2\sqrt{x.\frac{36}{x}}-15=-3\)

\(C_{min}=-3\) khi \(x=6\)

1 tháng 7 2019

Cảm on bn nhiều nhé

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)

2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)

\(=25\left(a-b\right)^2=25\cdot100=2500\)

25 tháng 10 2016

GTNN = -10

cách làm

M = ...

= 2(a2+b2)+a2+b2+c2

= 2(a2+b2)+(a+b+c)2-2(ab+bc+ac) (1)

mà ab+bc+ac=5

=> (1) = 2(a2+b2)+(a+b+c)2-10

có a2 và b2 \(\ge\) 0

2 >0

(a+b+c)2 \(\ge\) 0

=> (1) \(\ge\) -10

=> M min = -10

hơi sơ sài nhỉ, ko hiểu thì hỏi, tôi chỉ cho

25 tháng 10 2016

mình cảm ơn nha

 

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang