K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)

Áp dụng bđt chưa dấu giá trị tuyệt đó ts có

\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)

mà \(\left|x-2011\right|\ge0\)

Cộng hết vào => B\(\ge2\)

dấu = xảy ra <=> x=2011

17 tháng 2 2019

đk : \(\left|x-2010\right|\ne2012\)

\(B=\frac{2011}{2012-\left|x-2010\right|}\)

có : \(2011>0\)

để B đạt gtnn thì 2012 - |x - 2010| lớn nhất

mà |x - 2010| > 0

=> 2012 - |x - 2010| = 1

=> |x - 2010| = 2011  

=> x - 2010 = 2011 hoặc x - 2010 = -2011

=> x = 4021 hoặc x = -1

23 tháng 1 2016

D=|x-2010| + |x-2011| + |x-2012|
D=|x-2010| + |x-2011| + |2012-x|
=>D>=|x-2010+2012-x| + |x-2011|
=>D>=|2| + |x-2011|=2 + |x-2011|
Dấu = xảy ra <=> (x-2010)(2012-x)>=0<=>2010<=x<=2012(1)
                           x-2011=0 => x =2011(2)
Từ 1,2 => x=2011
Vậy Bmin=2 khi x=2011
 

 

19 tháng 12 2017

\(l=2010+\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|\)

\(=2010+\left|x-2011\right|+\left|2013-x\right|+\left|x-2012\right|\)

\(\ge2010+\left|x-2011+2013-x\right|+\left|x-2012\right|\)

\(\)\(=2010+2+\left|x-2012\right|\)

\(=2012+\left|x-2012\right|\ge2012\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-2011\ge0\\x-2012=0\\x-2013\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2011\\x=2012\\x\le2013\end{matrix}\right.\Rightarrow x=2012\)

Vậy \(min_l=2012\) khi \(x=2012\)

19 tháng 12 2017

Phục sát đất

8 tháng 8 2019

\(Q=\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\)

Ta có:\(\hept{\begin{cases}\left|x-2010\right|\ge0\\\left(y+2011\right)^{2010}\ge0\end{cases}}\)

Nên \(\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\ge2011\)

Vậy \(Q_{min}=2011\Leftrightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)