Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)
Áp dụng bđt chưa dấu giá trị tuyệt đó ts có
\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)
mà \(\left|x-2011\right|\ge0\)
Cộng hết vào => B\(\ge2\)
dấu = xảy ra <=> x=2011
\(l=2010+\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|\)
\(=2010+\left|x-2011\right|+\left|2013-x\right|+\left|x-2012\right|\)
\(\ge2010+\left|x-2011+2013-x\right|+\left|x-2012\right|\)
\(\)\(=2010+2+\left|x-2012\right|\)
\(=2012+\left|x-2012\right|\ge2012\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-2011\ge0\\x-2012=0\\x-2013\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2011\\x=2012\\x\le2013\end{matrix}\right.\Rightarrow x=2012\)
Vậy \(min_l=2012\) khi \(x=2012\)
\(Q=\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\)
Ta có:\(\hept{\begin{cases}\left|x-2010\right|\ge0\\\left(y+2011\right)^{2010}\ge0\end{cases}}\)
Nên \(\left|x-2010\right|+\left(y+2011\right)^{2010}+2011\ge2011\)
Vậy \(Q_{min}=2011\Leftrightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)