Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(\forall x\) ta có :
\(B=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)
\(\Leftrightarrow B=\left|x-2010\right|+\left|2011-x\right|+\left|x-2012\right|\)
\(\Leftrightarrow B\ge\left|x-2010\right|+\left|2011-x+x-2012\right|\)
\(\Leftrightarrow B\ge\left|x-2010\right|+1\)
Lại có : \(\left|x-2010\right|\ge0\)
\(\Leftrightarrow\left|x-2010\right|+1\ge1\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left|x-2010\right|=0\)
\(\Leftrightarrow x=2010\)
Vậy \(A_{Min}=1\Leftrightarrow x=2010\)
ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)
Áp dụng bđt chưa dấu giá trị tuyệt đó ts có
\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)
mà \(\left|x-2011\right|\ge0\)
Cộng hết vào => B\(\ge2\)
dấu = xảy ra <=> x=2011
A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011
≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011
= |y-2010|+|x-2011|+2012≥2012
Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0
<=> {y=2010x=2011{y=2010x=2011
Vay GTNN cua A=2012 khi {x=2011;y=2010
Ta có
|x−2010|\(\ge\)0 với mọi x
=>2012-|x−2010|\(\ge\)2012 với mọi x
=>C\(\ge\)\(\dfrac{1}{2012}\)với mọi x
Dấu bằng xảy ra <=>|x−2010|=0
<=>x-2012=0
<=>x=2012
Vậy Cmin=\(\dfrac{1}{2012}\)<=>x=2012
Lời giải
Do \(\left(x-2y\right)^2\ge0;\left(y-2012\right)^{2012}\ge0\)
Cộng theo vế hai BĐT trên,suy ra \(P\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-2012=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2y\\y=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4024\\y=2012\end{cases}}\)
Vậy \(P_{min}=0\Leftrightarrow\hept{\begin{cases}x=4024\\y=2012\end{cases}}\)
đk : \(\left|x-2010\right|\ne2012\)
\(B=\frac{2011}{2012-\left|x-2010\right|}\)
có : \(2011>0\)
để B đạt gtnn thì 2012 - |x - 2010| lớn nhất
mà |x - 2010| > 0
=> 2012 - |x - 2010| = 1
=> |x - 2010| = 2011
=> x - 2010 = 2011 hoặc x - 2010 = -2011
=> x = 4021 hoặc x = -1