K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Ta có :

\(2B=\frac{6x^2+12x+20}{x^2+2x+3}=\frac{7x^2+14x+21-x^2-2x-1}{x^2+2x+3}=\frac{7\left(x^2+2x+3\right)-\left(x+1\right)^2}{x^2+2x+3}\)

\(=7-\frac{\left(x+1\right)^2}{x^2+2x+3}\le7\) (Vì \(\frac{\left(x+1\right)^2}{x^2+2x+3}\ge0\))

Do \(2B\le7\Rightarrow B\le\frac{7}{2}\)đạt GTLN là \(\frac{7}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2+2x+3}=0\Rightarrow x=-1\)

Vậy GTLN của \(B\) là \(\frac{7}{2}\) tại \(x=-1\)

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

17 tháng 10 2018

Ta có: \(A=\frac{3x^2+6x+11}{x^2+2x+3}=3+\frac{2}{x^2+2x+3}=3+\frac{2}{\left(x+1\right)^2+2}\)

Đặt \(B=\frac{2}{\left(x+1\right)^2+2}\),để A đạt giá trị lớn nhất thì B lớn nhất.

Mà B lớn nhất khi \(\left(x+1\right)^2+2\) bé nhất. 

Lại có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\) (1)

Từ (1) suy ra: \(B\le\frac{2}{2}=1\Rightarrow A=3+B\le3+1=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy \(A_{max}=4\Leftrightarrow x=-1\)

19 tháng 3 2017

\(P=\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3\left(x^2+2x+1\right)+6+1}{\left(x^2+2x+1\right)+2}=\frac{3\left[\left(x+1\right)^2+2\right]+1}{\left(x+1\right)^2+2}=3+\frac{1}{\left(x+1\right)^2+2}\)

Để \(3+\frac{1}{\left(x+1\right)^2+2}\) đạt GTLN <=> \(\left(x+1\right)^2+2\) Đạt GTNN

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+2\ge2\) có GTNN là 2 tại x = - 1

\(\Rightarrow B_{max}=3+\frac{1}{2}=\frac{7}{2}\) tại x = - 1

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

29 tháng 5 2017

Ta có :

\(\frac{3x^2-6x+17}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}\)

Biểu thức đạt giá trị lớn nhất 

<=> x2 - 2x + 5 nhỏ nhất 

Ta lại có :

x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4 

Vì \(\left(x-1\right)^2\ge0\)

=> \(\left(x-1\right)^2+4\ge4\)

=> \(Min=4\)

Vậy giá trị lớn nhất của biểu thức là :

\(3+\frac{2}{4}=3+\frac{1}{2}=\frac{7}{2}\)

29 tháng 5 2017

\(\frac{3x^2-6x+17}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}=3+\frac{2}{\left(x-1\right)^2+4}\) (1)

Vì \(\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\frac{2}{\left(x-1\right)^2+4}\le\frac{2}{4}=\frac{1}{2}\forall x\)

\(\Rightarrow3+\frac{2}{\left(x-1\right)^2+4}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)

Dấu "=" xảy ra <=> \(x=1\)

Vậy ..........

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

6 tháng 11 2021

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

hk có câu H na bạn?
bạn thiếu câu cuối kìa