Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(=3+\frac{1}{x^2+2x+3}\)
Lại có: \(x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\)
\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x=-1
P2 tương tự
a,\(M=-2x^2+2x-3\)
\(\Rightarrow2M=-4x^2+4x-6=-\left(4x^2-4x+1\right)-5=-\left(2x-1\right)^2-5\)
Vì\(-\left(2x-1\right)^2\le0\Rightarrow2M=-\left(2x-1\right)^2-5\le-5\Rightarrow M\le-\frac{5}{2}\)
Dấu "=" xảy ra khi x=1/2
Vậy Mmax=-5/2 khi x=1/2
b, \(N=3x-x^2-4=-x^2+3x-4=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\)
Vì \(-\left(x-\frac{3}{2}\right)^2\le0\Rightarrow N=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)
Dấu "=" xảy ra khi x=3/2
Vậy Nmax=-7/4 khi x=3/2
c, \(P=\frac{3}{x^2-6x+10}=\frac{3}{x^2-6x+9+1}=\frac{3}{\left(x-3\right)^2+1}\)
Vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\Rightarrow\frac{1}{\left(x-3\right)^2+1}\le1\Rightarrow\frac{3}{\left(x-3\right)^2+1}\le3\)
Dấu "=" xảy ra khi x=3
Vậy Pmax=3 khi x=3
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) Để biểu thức vô nghĩa thì \(\dfrac{3x-2}{5}-\dfrac{x-4}{3}=0\)
\(\Leftrightarrow\dfrac{3x-2}{5}=\dfrac{x-4}{3}\)
\(\Leftrightarrow3\left(3x-2\right)=5\left(x-4\right)\)
\(\Leftrightarrow9x-6=5x-20\)
\(\Leftrightarrow9x-5x=-20+6\)
\(\Leftrightarrow4x=-14\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Ta có: \(A=\frac{3x^2+6x+11}{x^2+2x+3}=3+\frac{2}{x^2+2x+3}=3+\frac{2}{\left(x+1\right)^2+2}\)
Đặt \(B=\frac{2}{\left(x+1\right)^2+2}\),để A đạt giá trị lớn nhất thì B lớn nhất.
Mà B lớn nhất khi \(\left(x+1\right)^2+2\) bé nhất.
Lại có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\) (1)
Từ (1) suy ra: \(B\le\frac{2}{2}=1\Rightarrow A=3+B\le3+1=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy \(A_{max}=4\Leftrightarrow x=-1\)
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
a: |2x-3|=1
=>2x-3=1 hoặc 2x-3=-1
=>x=1(nhận) hoặc x=2(loại)
KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)
b: ĐKXĐ: x<>-1; x<>2
\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)
\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)
\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)
\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)
\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)