Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x
=> MinA= \(\frac{1}{2}\)↔\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)
\(\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\ge5\)
...............................................
Ta có |x-1| >=0
=> -2|x-1| =< 0
=> -2|x-1| - 7 =< 0 - 7
=> P =< -7
Dấu "=" xảy ra <=> |x-1| = 0
=> x-1 = 0
x = 0 + 1
x = 1
Vậy Pmax = -7 tại x = 1
a: \(A=\left|x+1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi x=-1
b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)
Dấu '=' xảy ra khi x=0
\(D=\frac{x^2+8}{x^2+3}=\frac{x^2+3+5}{x^2+3}=1+\frac{5}{x^2+3}\)
ta có x^2+3>=3 => 5/(x^2+3)<=5/3
=> D = 8/3 tại x=0
câu b)
2(x-1)2 +3 >=3
=> C <= 1/3 tại x=1