Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\ge5\)
...............................................
\(-x^2\le0\)
\(\Rightarrow-x^2+2\le2\)
Vậy giá trị lớn nhất của biểu thức trên là 2 khi và chỉ khi x=0
Ta có |x-1| >=0
=> -2|x-1| =< 0
=> -2|x-1| - 7 =< 0 - 7
=> P =< -7
Dấu "=" xảy ra <=> |x-1| = 0
=> x-1 = 0
x = 0 + 1
x = 1
Vậy Pmax = -7 tại x = 1
Ta có (x+1)^2\(\ge0với\forall x\) (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)
=>B=(x+1)^2+(y+3)^2+1\(\ge1\)
ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x
=> MinA= \(\frac{1}{2}\)↔\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)
a: \(A=\left|x+1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi x=-1
b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)
Dấu '=' xảy ra khi x=0
ta thấy: (x-1)^2 >hoặc =0
(y+3)^2 >hoặc = 0
suy ra (x-1)^2+ (y+3)^2 > hoac = 0
suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5
Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5
Vậy M đạt giá trị nhỏ nhất =5