K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

A=19n^n +5n^2 +1890n +2006

m =n -1 ; n>1 => m >0

A=19(m+1)^(m+1) + 5(m+1)^2 +1890(m+1) +2006

A=19(m+1)^(m+1) + 5 (m^2 +2m+1) +1890 m+ 1890 +2006

m =1 phần dư =0

m >=2

\(\left(m+1\right)^{m+1}=\left(m+1-1\right)\left[\left(m+1\right)^{\left(m+1\right)-1}+..\left(m+1\right)+1\right]=m.f\left(m\right)=m^2.g\left(n\right)+2m\)

\(A=m^2\left[19.g\left(n\right)+5\right]+\left(2.19+10+1890\right)m+1890+2006\)

phân dư A chia cho [m^2 =(n-1)^2 ]:

R=1938n +68

28 tháng 6 2016

Bài toán này là 'Bài toán 108' thuộc chuyên mục 'Toán vui hàng tuần' mà !

10 tháng 2 2017

à thôi mn khỏi phải giải, mk làm đc r

12 tháng 2 2017

cậu chỉ ra mk xem cách giải cái  bài này nghĩ ma k ra  ak?

AH
Akai Haruma
Giáo viên
18 tháng 12 2021

Lời giải:
$\frac{5n+2}{2n+1}=\frac{2,5(2n+1)-0,5}{2n+1}=2,5-\frac{0,5}{2n+1}$
Để $\frac{5n+2}{2n+1}$ lớn nhất thì $\frac{0,5}{2n+1}$ nhỏ nhất 

$\Leftrightarrow 2n+1$ lớn nhất 

$\Leftrightarrow n$ lớn nhất. Trong tập số tự nhiên thì không tồn tại số tự nhiên lớn nhất nên không có GTLN 

Để $\frac{5n+2}{2n+1}$ nhỏ nhất thì $\frac{0,5}{2n+1}$ lớn nhất 

$\Leftrightarrow 2n+1$ nhỏ nhất $\Leftrightarrow n$ nhỏ nhất 

Với $n\in\mathbb{N}^*$ thì $n$ nhỏ nhất bằng $1$

$\Rightarrow \frac{5n+2}{2n+1}$ min $=\frac{5.1+2}{2.1+1}=\frac{7}{3}$

31 tháng 8 2017

Giải trên máy Casio fx-570MS ( Casio fx-570 tương tự)

Nhắc lại: Đa thức P(x) chia hết cho ax + b khi và chỉ khi P(-ba)=0

              Dư của phép chia đa thức P(x) cho ax + b là P(-ba)

Quy trình bấm phím như sau:

1. Ghi vào màn hình: 6A3 -7A2 -16A

31 tháng 8 2017

cám ơn bạn nha!