K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

a/ Gọi điểm cố định là N(x0;y0)

Suy ra N thuộc đồ thị hàm số y = (m-2)x+3 nên : 

\(y_0=\left(m-2\right)x_0+3\Leftrightarrow mx_0-\left(2x_0+y_0-3\right)=0\)

Vì đths luôn đi qua N với mọi x,y nên : 

\(\begin{cases}x_0=0\\2x_0+y_0-3=0\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=0\\y_0=3\end{cases}\)

Vậy điểm cố định là \(N\left(0;3\right)\)

b,c tương tự

 

 

14 tháng 9 2016

Toán lớp 9Toán lớp 9

2 tháng 5 2020

a) giả sử đường thẳng trên đi qua điểm cố định A ( x0 ; y0 )

\(\Rightarrow y_0=\left(m-2\right)x_0+3\) với mọi m

\(\Leftrightarrow x_0m-\left(y_0+2x_0-3\right)=0\)với mọi m

\(\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0+2x_0-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=3\end{cases}}}\)

Vậy điểm cố định là ( 0 ; 3 )

2 tháng 5 2020

tương tự : b) ( -1 ; 2 )

c) ( -2 ; 1 )

AH
Akai Haruma
Giáo viên
5 tháng 8 2021

Lời giải:
a. 

$y=(2m+5)x+m+3, \forall m$

$\Leftrightarrow 2mx+5x+m+3-y=0, \forall m$

$\Leftrightarrow m(2x+1)+(5x+3-y)=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} 2x+1=0\\ 5x+3-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-1}{2}\\ y=\frac{1}{2}\end{matrix}\right.\)

Vậy đt luôn đi qua điểm $(\frac{-1}{2}, \frac{1}{2})$ với mọi $m$

b.

$y=m(x+2), \forall m$

$\Leftrightarrow m(x+2)-y=0, \forall m$

\(\Leftrightarrow \left\{\begin{matrix} x+2=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-2\\ y=0\end{matrix}\right.\) 

Vậy đt luôn đi qua điểm $(-2,0)$ với mọi $m$.

16 tháng 4 2020

Điều kiện cần và đủ để đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) đi qua điểm cố định \(N\left(x_0;y_0\right)\)với mọi m là:

\(\left(m-2\right)x_0+\left(m-1\right)y_0=1\forall m\)

\(\Leftrightarrow mx_0-2x_0+my_0-y_0-1=0\forall m\)

\(\Leftrightarrow\left(x_0+y_0\right)m-\left(2x_0+y_0+1\right)=0\forall m\)

\(\Leftrightarrow\hept{\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-1\\y_0=1\end{cases}}\)

Vậy các đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) luôn đi qua điểm cố định N(-1; 1)

16 tháng 4 2020

n=45+9=

3 tháng 8 2017

a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua

Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)

\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)

Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)

Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định 

b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)

Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)

Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)

Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)

Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\) Xác định hệ số a,b trong mỗi trường hợp sau: a.(d) đi qua A(-1;4);B(2;-3) b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3 c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\) d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1 e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1 f.(d) có hệ số...
Đọc tiếp

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)

Xác định hệ số a,b trong mỗi trường hợp sau:

a.(d) đi qua A(-1;4);B(2;-3)

b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3

c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)

d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1

e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1

f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1

Bài 2:

a)Tìm điểm cố định của các đường thẳng sau:

\(y=mx-2m-1\)

\(y=mx+m-1\)

y=(m+1)x+2m-3

b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)

c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)

3
NV
4 tháng 5 2019

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

NV
4 tháng 5 2019

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)