Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M+N=3xyz-2x^2+5xy+5x^2+xyz-5y+3-2y=3x^2+4xyz+5xy-7y+3\)
\(N-M=5x^2+xyz-5y+3-2y-3xyz+2x^2-5xy=7x^2-2xyz-5xy-7y+3\)
b) \(16x-5x^2-3=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)
c) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
d) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
Lời giải
Ta có
Vì phần dư R = 5 ≠ 0 nên phép chia đa thức 3 x 3 – 2 x 2 + 5 cho đa thức 3x – 2 là phép chia có dư. Do đó (I) sai
Lại có
Nhận thấy phần dư R = 0 nên phép chia đa thức ( 2 x 3 + 5 x 2 – 2x + 3) cho đa thức (2 x 2 – x + 1) là phép chia hết. Do đó (II) đúng
Đáp án cần chọn là: D
\(2x^3+5x^2-2x+a=x\left(2x^2-x+1\right)+3\left(2x^2-x+1\right)-3+a\)
\(=\left(2x^2-x+1\right)\left(x+3\right)-3+a⋮\left(2x^2-x+1\right)\)
\(\Rightarrow-3+a=0\Rightarrow a=3\)
\(2x^3+5x^2-2x+a⋮2x^2-x+1\)
\(\Leftrightarrow2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)
\(\Leftrightarrow a-3=0\)
hay a=3
a: Khi x=-1 thì B=2*(-1)^2+1+1=4
b: Để A chia hết cho B thì
\(2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)
=>a-3=0
=>a=3
c: Để B=1 thì 2x^2-x=0
=>x=0 hoặc x=1/2
\(Q-\left(5x^2-xyz\right)=xy+2x^2-3xyz+5\)
\(\Leftrightarrow Q=xy+2x^2-3xyz+5+5x^2-xyz\)
\(\Leftrightarrow Q=7x^2+xy-4xyz+5\)
\(Q-\left(5x^2-xyz\right)=xy+2x^2-3xyz+5\\ Q=xy+2x^2-3xyz+5+5x^2-xyz\\ Q=7x^2+xy-4xyz+5\)