Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\sqrt{ }\)(có nghĩa là \(\div R\))
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = "
chúc bạn thành công
a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\frac{ }{ }\)(có nghĩa là ÷R)
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = ". Nó ra là: \(1568429973\)
chúc bạn thành công
a) \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)
b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)
\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)
\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5
c) \(A=1+2+2^2+...+2^{99}\)
\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1
=> A không chia hết cho 7
3^201+4^202+5^203
=.......7+.......6+.........5
=.........3+..........5
=....8
Vậy chữ số tận cùng của:3^201+4^202+5^203 là 8
nhớ kick cho mình nha
a) Đặt A = 1 + 7 + 72 + 73 + 74 + ... + 72015 (có 2016 số; 2016 chia hết cho 4)
A = (1 + 7 + 72 + 73) + (74 + 75 + 76 + 77) + ... + (72012 + 72013 + 72014 + 72015)
A = 400 + 74.(1 + 7 + 72 + 73) + ... + 72012.(1 + 7 + 72 + 73)
A = 400 + 74.400 + ... + 72012.400
A = 400.(1 + 74 + ... + 72012)
A = (...0) (đpcm)
b) Dãy số 1; 7; 72; 73; 74; ...; 72015 gồm có 2016 số hạng
Ta đã biết 1 số tự nhiên khi chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2014. Có 2016 số mà chỉ có 2015 loại số dư nên theo nguyên lí Dirichlet sẽ có ít nhất 2 số cùng dư khi chia cho 2015
Hiệu của 2 số này chia hết cho 2015
Vậy có thể tìm được 2 số hạng của dãy mà hiệu của chúng chia hết cho 2015
a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
Vì mỗi cặp của đa thức \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )
\(\Rightarrow\)Đa thức \(S\)không dư số nào
\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)
\(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)
\(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)
\(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)
Vậy \(S⋮126\)
Chữ số tận cùng của \(2^{202}\) là 4.
Chữ số tận cùng của biểu thức A: là 7