Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
\(M=\frac{5n+185+2n+1+n+7}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)
n là số tự nhiên thì (4n+3)>3
Để M là 1 số tự nhiên thì 187 phải chia hết cho (4n+3) hay (4n+3) là ước nguyên dương lơn hơn 3 của 187 là: 11;17;187.
- Nếu 4n+3=11 => n=2
- Nếu 4n+3=17 => n=7/2 - Loại vì không thuộc N
- Nếu 4n+3 = 187 => n=46
Vậy, với n = 2 hoặc n = 46 thì M là số tự nhiên.
Đề bài sai rồi bạn, phải là n thuộc N sao vi nếu n=0 thì A=20124.0+20134.0+20144.0+20154.0=20120+20130+20140+20150=1+1+1+1=4=22, là số chính phương, vô lí
Nếu n\(\in\)N thì có thể xảy ra trường hợp n = 0.
Nếu n = 0 => A = 20124 . 0 + 20134 . 0 20144 . 0 20154 . 0
=> A = 20120 + 20130 20140 20150 = 1 + 1 + 1 + 1 = 4 => A là số chính phương
==>> Đề sai ( phải sửa là n\(\in\)N* )
Chứng minh chia hết cho 2:
Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên
\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)
Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)
Theo Fecma vì 11 là số nguyên tố nên
\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)
Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)
\(\Rightarrow2^{4n+1}=10k+2\)
Kết hợp với (2) ta được
\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)
Tương tự ta có:
\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)
Ta lại có:
\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10l+3\)
Kết hợp với (4) ta được
\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)
Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)
\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)
Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)